1、复制随机函数的生成过程。使用标量输入的规则(或随机)网格和给定的协方差函数。关于如何从多元高斯分布生成随机样本有相关提示。自行设定一些训练数据点,并从所得的高斯过程后验分布中进行随机抽样。
要完成该任务,可按以下步骤操作:
- 确定输入网格 :选择标量输入的规则或随机网格。
- 确定协方差函数 :使用给定的协方差函数。
- 生成训练数据 :自行设定一些训练数据点。
- 计算联合先验分布 :根据给定的训练输出和测试输出,按照先验计算联合先验分布。
- 计算后验分布 :通过对联合高斯先验分布进行条件化,得出后验分布。
- 生成随机样本 :依据相关提示,通过计算后验分布中的均值和协方差矩阵,从联合后验分布中生成随机样本。
- 绘制随机函数 :将生成的随机函数绘制出来。
2、使用拉普拉斯二元高斯过程分类器(GPC)实现,研究ˆf和预测概率等如何随log(ℓ)和log(σf)变化。
可通过以下步骤开展研究:
- 运行拉普拉斯二元GPC实现,设置不同的 log(ℓ) 和 log(σf) 值;
- 记录不同参数下的 ˆf 和预测概率;
- 分析记录的数据,观察 ˆf 和预测概率随 log(ℓ) 和 log(σf) 的变化规律。