高斯过程与核方法实践指南

1、复制随机函数的生成过程。使用标量输入的规则(或随机)网格和给定的协方差函数。关于如何从多元高斯分布生成随机样本有相关提示。自行设定一些训练数据点,并从所得的高斯过程后验分布中进行随机抽样。

要完成该任务,可按以下步骤操作:

  1. 确定输入网格 :选择标量输入的规则或随机网格。
  2. 确定协方差函数 :使用给定的协方差函数。
  3. 生成训练数据 :自行设定一些训练数据点。
  4. 计算联合先验分布 :根据给定的训练输出和测试输出,按照先验计算联合先验分布。
  5. 计算后验分布 :通过对联合高斯先验分布进行条件化,得出后验分布。
  6. 生成随机样本 :依据相关提示,通过计算后验分布中的均值和协方差矩阵,从联合后验分布中生成随机样本。
  7. 绘制随机函数 :将生成的随机函数绘制出来。

2、使用拉普拉斯二元高斯过程分类器(GPC)实现,研究ˆf和预测概率等如何随log(ℓ)和log(σf)变化。

可通过以下步骤开展研究:

  1. 运行拉普拉斯二元GPC实现,设置不同的 log(ℓ) 和 log(σf) 值;
  2. 记录不同参数下的 ˆf 和预测概率;
  3. 分析记录的数据,观察 ˆf 和预测概率随 log(ℓ) 和 log(σf) 的变化规律。

3、计算机练习:在区间(-1/2, 1/2)上均匀分布n + 1个点(取n为偶数,使其中一个采样点落在0处)。计算与特定协方差函数和噪声水平对应的高斯过程回归的权重函数,并绘制x = 0处的权重函数。现在计算与该协方差函数对应的等效核(等效核是通过积分定义的,有一个1/(n + 1)的缩放因子),将其绘制在同一坐标轴上并比较结果。若想使用较大的n(例如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值