CSU 1803 a×b 是 2016 的倍数(枚举)

本文介绍了一种高效算法,用于计算在给定范围内能够被2016整除的正整数对(a,b)的数量。通过枚举余数而非直接枚举约数,避免了重复计算的问题,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


Description

 给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:
1. 1≤a≤n,1≤b≤m;
2. a×b 是 2016 的倍数。

Input

输入包含不超过 30 组数据。
每组数据包含两个整数 n,m (1≤n,m≤10 9).

Output

对于每组数据,输出一个整数表示满足条件的数量。

Sample Input

32 63
2016 2016
1000000000 1000000000

Sample Output

1
30576
7523146895502644

思路:

额...一开始卡在枚举约数,统计个数上面,因为会碰到重复的值,要用容赤解决,太麻烦,导致一度卡题.........

后来仔细思考除了能用约数判断该数能不能被整除,还有一种新的方案,就是(a*b)%mod ------> ((a%mid)*(b%mod))%mod==0


即枚举余数,这种方法可以保证不出现重读的数,因为约数r是一对一的,不可能出现重复统计,

然后这边就有一个wrong点,就是r=0,你就会重复统计了。。。 数学啊 博大精深!!!!



#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
int main()
{
	ll a,b,ans,i,j;
	while(cin>>a>>b) {
		ans=0;
		ans+=a/2016*b;     //余数为0 
		ans+=b/2016*(a-a/2016);
		for(i=1;i<=min(2015LL,a);i++) { //枚举余数 
			for(j=1;j<=min(2015LL,b);j++) {
				if(i*j%2016==0) {
					ans+=((a-i)/2016+1)*((b-j)/2016+1);
				}
			}
		}
		cout<<ans<<endl;
	}
	return 0;
} 



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值