hdu5586 & BestCoder Round #64 (div.2) 1002(最大连续子序列和)

本文探讨了一个利用动态规划求解数列变换后最大和的问题,具体步骤包括计算变换后的序列,求解最大连续子序列和,并将原始序列和变换后的最大和相加得到最终结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意:
给n个数A1,A2....An,你可以选择一个区间(也可以不选),区间里每个数x变成f(x),其中f(x)=(1890x+143) mod 10007f(x)=(1890x+143)mod10007。问最后n个数之和最大可能为多少。

解题思路:
动态规划,求最大连续子序列和,在开一个数组,记录f(ai)-ai的值,对这个序列求最大连续子序列和,然后把所有ai的值加一起,在和前边的最大连续子序列和加起来就是答案了。
最大连续子序列和的状态转移方程:
f(i)=max(f(i-1)+ai,ai)
ac代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=1e5+1000;
int a[maxn],n;
long long dp[maxn],b[maxn];
int main()
{
        while(scanf("%d",&n)!=EOF)
        {
                long long sum=0,ret=0;
                for(int i=0;i<n;i++)
                {
                scanf("%d",a+i);
                sum+=a[i];
                b[i]=((1890*a[i]+143)%10007-a[i]);
                }
                ret=b[0];
                dp[0]=b[0];
                for(int i=1;i<n;i++)
                {
                        dp[i]=max(dp[i-1]+b[i],b[i]);
                        ret=max(ret,dp[i]);
                }
                if(ret>=0)
                        printf("%I64d\n",sum+ret);
                else
                        printf("%I64d\n",sum);
        }
        return  0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值