MySQL进阶之索引(2)索引的使用和设计原则

说明

想要了解索引请看我的

数据准备

create database itcast;
use itcast;
create table tb_user(
	id int primary key auto_increment comment '主键',
	name varchar(50) not null comment '用户名',
	phone varchar(11) not null comment '手机号',
	email varchar(100) comment '邮箱',
	profession varchar(11) comment '专业',
	age tinyint unsigned comment '年龄',
	gender char(1) comment '性别 , 1: 男, 2: 女',
	status char(1) comment '状态',
	createtime datetime comment '创建时间'
) comment '系统用户表';

INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1',
'6', '2001-02-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33,
'1', '0', '2001-03-05 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1',
'2', '2002-03-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54,
'1', '0', '2001-07-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23,
'2', '1', '2001-04-22 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2',
'0', '2001-02-07 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24,
'2', '0', '2001-02-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38,
'1', '5', '2001-05-23 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43,
'1', '0', '2001-09-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动
化', 27, '1', '2', '2001-08-16 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工
程', 27, '1', '0', '2001-06-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1',
'0', '2001-05-11 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价',
44, '1', '1', '2001-04-09 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43,
'1', '2', '2001-04-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40,
'2', '3', '2001-02-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31,
'2', '0', '2001-01-30 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35,
'2', '0', '2000-05-03 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1',
'1', '2001-08-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易',
30, '1', '0', '2007-03-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51,
'2', '0', '2001-08-15 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52,
'1', '2', '2000-04-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19,
'1', '3', '2002-07-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20,
'1', '0', '2002-03-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,
createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29,
'1', '4', '2003-05-26 00:00:00');
SELECT * from tb_user;

-- A. name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
create index idx_user_name on tb_user(name);
show index from tb_user;

-- B. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
create unique index idx_user_phone on tb_user(phone);
show index from tb_user;

-- C. 为profession、age、status创建联合索引。
create index idx_user_pro_age_sta on tb_user(profession, age, status);
show index from tb_user;

show index from tb_user;

6 索引使用

6.1 验证索引效率

在讲解索引的使用原则之前,先通过一个简单的案例,来验证一下索引,看看是否能够通过索引来提升数据查询性能。在演示的时候,我们还是使用之前准备的一张表 tb_sku , 在这张表中准备了1000w的记录。

id属性有索引

在这里插入图片描述
这张表中id为主键,有主键索引,而其他字段是没有建立索引的。我们先来查询其中的一条记录,看看里面的字段情况,执行如下SQL:
select * from tb_sku where id = 1\G; -- 这里\G 是数据竖着展示
在这里插入图片描述

sn属性无索引

可以看到即使有1000w的数据,根据id进行数据查询,性能依然很快,因为主键id是有索引的。 那么接下来,我们再来根据 sn 字段进行查询,执行如下SQL:
SELECT * FROM tb_sku WHERE sn = '100000003145001';
在这里插入图片描述
我们可以看到根据sn字段进行查询,查询返回了一条数据,结果耗时20.78sec,就是因为sn没有索引,而造成查询效率很低。

设置sn属性索引再次查看

那么我们可以针对于sn字段,建立一个索引,建立了索引之后,我们再次根据sn进行查询,再来看一下查询耗时情况。
创建索引:create index idx_sku_sn on tb_sku(sn) ;
在这里插入图片描述
然后再次执行相同的SQL语句,再次查看SQL的耗时。
SELECT * FROM tb_sku WHERE sn = '100000003145001';
在这里插入图片描述
我们明显会看到,sn字段建立了索引之后,查询性能大大提升。建立索引前后,查询耗时都不是一个数量级的。创建索引前20.78s创建索引后0.01s 速度差了1000倍。

6.2 最左前缀法则

如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。

以 tb_user 表为例,我们先来查看一下之前 tb_user 表所创建的索引。show index from tb_user
在这里插入图片描述

在 tb_user 表中,有一个联合索引,这个联合索引涉及到三个字段,顺序分别为:profession,age,status。

对于最左前缀法则指的是,查询时,最左变的列,也就是profession必须存在,否则索引全部失效。而且中间不能跳过某一列,否则该列后面的字段索引将失效。接下来,我们来演示几组案例,看一下具体的执行计划:

  1. explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
    在这里插入图片描述

  2. explain select * from tb_user where profession = '软件工程' and age = 31;
    在这里插入图片描述

  3. explain select * from tb_user where profession = '软件工程';
    在这里插入图片描述
    以上的这三组测试中,我们发现只要联合索引最左边的字段 profession存在,索引就会生效,只不过索引的长度不同。 而且由以上三组测试,我们也可以推测出profession字段索引长度为47、age字段索引长度为2、status字段索引长度为5。

  4. explain select * from tb_user where age = 31 and status = '0';
    在这里插入图片描述

  5. explain select * from tb_user where status = '0';
    在这里插入图片描述
    而通过上面的这两组(4,5)测试,我们也可以看到索引并未生效,原因是因为不满足最左前缀法则,联合索引最左边的列profession不存在。

  6. explain select * from tb_user where profession = '软件工程' and status = '0';
    在这里插入图片描述
    上述的SQL查询时,存在profession字段,最左边的列是存在的,索引满足最左前缀法则的基本条
    件。但是查询时,跳过了age这个列,所以后面的列索引是不会使用的,也就是索引部分生效,所以索引的长度就是47。

  7. explain select * from tb_user where age = 31 and status = '0' and profession = '软件工程';

    • 思考题:当上述SQL语句执行时,是否满足最左前缀法则,走不走上述的联合索引,索引长度?
    • 可以看到,是完全满足最左前缀法则的,索引长度54,联合索引是生效的。
    • 注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是
      第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。
      在这里插入图片描述

总结

规则作用范围说明
最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。

6.3 范围查询

  1. 联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。
    explain select * from tb_user where profession = '软件工程' and age > 30 and status = '0';
    当范围查询使用> 或 < 时,走联合索引了,但是索引的长度为49,就说明范围查询右边的status字段是没有走索引的。

  2. 联合索引中,出现范围查询(>=,<=),
    explain select * from tb_user where profession = '软件工程' and age >= 30 and status = '0';
    当范围查询使用>= 或 <= 时,走联合索引了,但是索引的长度为54,就说明所有的字段都是走索引的。

在这里插入图片描述

所以,在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。

总结

规则作用范围说明
最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。

6.4 索引失效情况

索引列运算

不要在索引列上进行运算操作, 索引将失效。
在tb_user表中,除了前面介绍的联合索引之外,还有一个索引,是phone字段的单列索引。
在这里插入图片描述

  1. A. 当根据phone字段进行等值匹配查询时, 索引生效。
    explain select * from tb_user where phone = '17799990015';
    在这里插入图片描述
  2. B. 当根据phone字段进行函数运算操作之后,索引失效。下图中的type是ALL说明检索了整张表,效率低。
    explain select * from tb_user where substring(phone,10,2) = '15';
    在这里插入图片描述

字符串不加引号

字符串类型字段使用时,不加引号,索引将失效。
接下来,我们通过两组示例,来看看对于字符串类型的字段,加单引号与不加单引号的区别:

  1. 多列索引
    explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';
    explain select * from tb_user where profession = '软件工程' and age = 31 and status = 0;
    
    在这里插入图片描述
  2. 单列索引
    explain select * from tb_user where phone = '17799990015';
    explain select * from tb_user where phone = 17799990015;
    
    在这里插入图片描述

经过上面两组示例,我们会明显的发现,如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效。

模糊查询

如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。

接下来,我们来看一下这三条SQL语句的执行效果,查看一下其执行计划:

由于下面查询语句中,都是根据profession字段查询,符合最左前缀法则,联合索引是可以生效的,我们主要看一下,模糊查询时,%加在关键字之前,和加在关键字之后的影响。

explain select * from tb_user where profession like '软件%';
explain select * from tb_user where profession like '%工程';
explain select * from tb_user where profession like '%工%';

在这里插入图片描述

经过上述的测试,我们发现,在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。

or连接条件

用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。

explain select * from tb_user where  age = 23 or id = 10;
explain select * from tb_user where phone = '17799990017' or age = 23;

在这里插入图片描述

由于age没有索引,所以即使id、phone有索引,索引也会失效。所以需要针对于age也要建立索引。

explain select * from tb_user where phone = '17799990017' or id = 10;
在这里插入图片描述

最终,我们发现,当or连接的条件,左右两侧字段都有索引时,索引才会生效。

数据分布影响

如果MySQL评估使用索引比全表更慢,则不使用索引。

select * from tb_user where phone >= '17799990005';
select * from tb_user where phone >= '17799990015';

在这里插入图片描述

经过测试我们发现,相同的SQL语句,只是传入的字段值不同,最终的执行计划也完全不一样,这是为什么呢?

就是因为MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。

总结

规则作用范围说明
最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。
索引失效之索引列运算单列索引或者多列索引不要在索引列上进行运算操作, 索引将失效。比如对字段进行函数运算
索引失效之字符串不加引号单列索引或者多列索引字符串类型字段使用时,不加引号,索引将失效。
索引失效之模糊查询单列索引或者多列索引如果仅仅是尾部模糊匹配(尾部%),索引不会失效。如果是头部模糊匹配(头部%),索引失效。
索引失效之or连接条件单列索引或者多列索引用or分割开的条件, 无论是在or前的条件中的列没有索引,还是后面的列中没有索引,那么涉及的索引都不会被用到。
索引失效之数据分布影响单列索引或者多列索引如果MySQL评估使用索引比全表更慢,则不使用索引。

6.5 SQL提示

数据准备

前tb_user表的数据情况如下:
在这里插入图片描述

索引情况如下:
在这里插入图片描述

引入场景

当一个字段既是单列索引又是联合索引时,MySQL会选择哪一个索引查询?能否自己指定索引让MySQL去查询?

  1. 执行SQL : explain select * from tb_user where profession = '软件工程';
    在这里插入图片描述
    查询走了联合索引。
  2. 执行SQL,创建profession的单列索引:create index idx_user_pro on tb_user(profession);
    在这里插入图片描述
  3. 创建单列索引后,再次执行A中的SQL语句,查看执行计划,看看到底走哪个索引。
    在这里插入图片描述

测试结果,我们可以看到,possible_keys中idx_user_pro_age_sta,idx_user_pro 这两个索引都可能用到,最终MySQL选择了idx_user_pro_age_sta索引。这是MySQL自动选择的结果。

那么,我们能不能在查询的时候,自己来指定使用哪个索引呢?答案是肯定的,此时就可以借助于
MySQL的SQL提示来完成。接下来,介绍一下SQL提示。

SQL提示使用

SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。

  1. use index :建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估,谁快用谁)。

    explain select * from tb_user use index(idx_user_pro) 
    where profession = '软件工程';
    

    在这里插入图片描述

  2. ignore index : 忽略指定的索引

    explain select * from tb_user ignore index(idx_user_pro) 
    where profession = '软件工程';
    

    在这里插入图片描述

  3. force index : 强制使用索引

    explain select * from tb_user force index(idx_user_pro) 
    where profession = '软件工程';
    

    在这里插入图片描述

总结

规则作用范围说明
最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。
索引失效之索引列运算单列索引或者多列索引不要在索引列上进行运算操作, 索引将失效。比如对字段进行函数运算
索引失效之字符串不加引号单列索引或者多列索引字符串类型字段使用时,不加引号,索引将失效。
索引失效之模糊查询单列索引或者多列索引如果仅仅是尾部模糊匹配(尾部%),索引不会失效。如果是头部模糊匹配(头部%),索引失效。
索引失效之or连接条件单列索引或者多列索引用or分割开的条件, 无论是在or前的条件中的列没有索引,还是后面的列中没有索引,那么涉及的索引都不会被用到。
索引失效之数据分布影响单列索引或者多列索引如果MySQL评估使用索引比全表更慢,则不使用索引。
SQL提示use index(索引名)建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估,谁快用谁)
SQL提示ignore index(索引名)忽略指定的索引
SQL提示force index(索引名)强制使用索引

6.6 覆盖索引

覆盖索引概念

尽量使用覆盖索引,减少select *。 那么什么是覆盖索引呢? 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

案例引入

接下来,我们来看一组SQL的执行计划,看看执行计划的差别,然后再来具体做一个解析。

-- 查找 id, profession 
explain select id, profession from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
-- 查找 id,profession,age, status
explain select id,profession,age, status from tb_user where profession = '软件工程' and age = 31 and status = '0' ;
-- 查找 id,profession,age, status, name
explain select id,profession,age, status, name from tb_user where profession = '软 件工程' and age = 31 and status = '0' ;
-- 查找 * 
explain select * from tb_user where profession = '软件工程' and age = 31 and status = '0';

在这里插入图片描述

从上述的执行计划我们可以看到,这四条SQL语句的执行计划前面所有的指标都是一样的,看不出来差异。但是此时,我们主要关注的是后面的Extra,前面两条SQL的结果为Using where; Using Index ; 而后面两条SQL的结果为: Using index condition

举例说明覆盖索引

Extra含义
Using where;Using Index查找使用了索引,但是需要的数据都在索引列中能找到,所以不需 要回表查询数据
Using index condition查找使用了索引,但是需要回表查询数据

因为,在tb_user表中有一个联合索引 idx_user_pro_age_sta,该索引关联了三个字段profession、age、status,而这个索引也是一个二级索引,所以叶子节点下面挂的是这一行的主键id。 所以当我们查询返回的数据在 id、profession、age、status 之中,则直接走二级索引直接返回数据了。 如果超出这个范围,就需要拿到主键id,再去扫描聚集索引,再获取额外的数据了,这个过程就是回表。 而我们如果一直使用select * 查询返回所有字段值,很容易就会造成回表查询(除非是根据主键查询,此时只会扫描聚集索引)。

为了大家更清楚的理解,什么是覆盖索引,什么是回表查询,我们一起再来看下面的这组SQL的执行过程。

  1. 表结构及索引示意图:id是主键,是一个聚集索引。 name字段建立了普通索引,是一个二级索引(辅助索引)。
    在这里插入图片描述
  2. 执行SQL : select * from tb_user where id = 2;根据id查询,直接走聚集索引查询,一次索引扫描,直接返回数据,性能高。
    在这里插入图片描述
  3. 执行SQL:selet id,name from tb_user where name = 'Arm';虽然是根据name字段查询,查询二级索引,但是由于查询返回在字段为id,name,在name的二级索引中,这两个值都是可以直接获取到的,因为覆盖索引,所以不需要回表查询,性能高。
    在这里插入图片描述
  4. 执行SQL:selet id,name,gender from tb_user where name = 'Arm';由于在name的二级索引中,不包含gender,所以,需要两次索引扫描,也就是需要回表查询,性能相对较差一点。
    在这里插入图片描述

      思考题:一张表, 有四个字段(id, username, password, status), 由于数据量大, 需要对以下SQL语句进行优化, 该如何进行才是最优方案?:select id,username,password from tb_user where username ='itcast';
      答案: 针对于username, password建立联合索引, sql为: create index idx_user_name_pass on tb_user(username,password);
这样可以避免上述的SQL语句,在查询的过程中,出现回表查询。

总结

规则作用范围说明
最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。
索引失效之索引列运算单列索引或者多列索引不要在索引列上进行运算操作, 索引将失效。比如对字段进行函数运算
索引失效之字符串不加引号单列索引或者多列索引字符串类型字段使用时,不加引号,索引将失效。
索引失效之模糊查询单列索引或者多列索引如果仅仅是尾部模糊匹配(尾部%),索引不会失效。如果是头部模糊匹配(头部%),索引失效。
索引失效之or连接条件单列索引或者多列索引用or分割开的条件, 无论是在or前的条件中的列没有索引,还是后面的列中没有索引,那么涉及的索引都不会被用到。
索引失效之数据分布影响单列索引或者多列索引如果MySQL评估使用索引比全表更慢,则不使用索引。
SQL提示use index(索引名)建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估,谁快用谁)
SQL提示ignore index(索引名)忽略指定的索引
SQL提示force index(索引名)强制使用索引
覆盖索引尽量使用覆盖索引,减少select *。 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。

6.7 前缀索引

前缀索引概念

当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。

语法

create index idx_xxxx on table_name(column(n)) ;

示例:
为tb_user表的email字段,建立长度为5的前缀索引。

create index idx_email_5 on tb_user(email(5));

在这里插入图片描述

前缀长度

可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)数据表的记录总数的比值。索引选择性越高则查询效率越高,唯一索引(都不重复)的选择性是1,这是最好的索引选择性,性能也是最好的。

-- count(distinct email)表示 email字段去重后的数量
select count(distinct email) / count(*) from tb_user;
-- count(distinct substring(email,1,5)) email字段的前五位字符去重后的数量
select count(distinct substring(email,1,5)) / count(*) from tb_user;

前缀索引的查询流程

在这里插入图片描述

总结

规则作用范围说明
1最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
2范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。
3索引失效之索引列运算单列索引或者多列索引不要在索引列上进行运算操作, 索引将失效。比如对字段进行函数运算
3索引失效之字符串不加引号单列索引或者多列索引字符串类型字段使用时,不加引号,索引将失效。
3索引失效之模糊查询单列索引或者多列索引如果仅仅是尾部模糊匹配(尾部%),索引不会失效。如果是头部模糊匹配(头部%),索引失效。
3索引失效之or连接条件单列索引或者多列索引用or分割开的条件, 无论是在or前的条件中的列没有索引,还是后面的列中没有索引,那么涉及的索引都不会被用到。
3索引失效之数据分布影响单列索引或者多列索引如果MySQL评估使用索引比全表更慢,则不使用索引。
4SQL提示use index(索引名)建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估,谁快用谁)
4SQL提示ignore index(索引名)忽略指定的索引
4SQL提示force index(索引名)强制使用索引
5覆盖索引尽量使用覆盖索引,减少select *。 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。
6索引前缀语法:create index idx_email_5 on tb_user(email(5));索引的选择性求法: select count(distinct substring(email,1,5)) / count(*) from tb_user;

6.8 单列索引与联合索引

单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
我们先来看看tb_user 表中目前的索引情况:
在这里插入图片描述

在查询出来的索引中,既有单列索引,又有联合索引。接下来,我们来执行一条SQL语句,看看其执行计划:
在这里插入图片描述

通过上述执行计划我们可以看出来,在and连接的两个字段phone、name上都是有单列索引的,但是最终mysql只会选择一个索引,也就是说,只能走一个字段的索引,此时是会回表查询的。

紧接着,我们再来创建一个phone和name字段的联合索引来查询一下执行计划。

create unique index idx_user_phone_name on tb_user(phone,name);

在这里插入图片描述

此时,查询时,就走了联合索引,而在联合索引中包含 phone、name的信息,在叶子节点下挂的是对应的主键id,所以查询是无需回表查询的。

在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

如果查询使用的是联合索引,具体的结构示意图如下:
在这里插入图片描述

总结

规则作用范围说明
1最左前缀法则多列(联合索引)最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
2范围查询多列(联合索引)在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。出现范围查询(>,<),范围查询右侧的列索引失效。
3索引失效之索引列运算单列索引或者多列索引不要在索引列上进行运算操作, 索引将失效。比如对字段进行函数运算
3索引失效之字符串不加引号单列索引或者多列索引字符串类型字段使用时,不加引号,索引将失效。
3索引失效之模糊查询单列索引或者多列索引如果仅仅是尾部模糊匹配(尾部%),索引不会失效。如果是头部模糊匹配(头部%),索引失效。
3索引失效之or连接条件单列索引或者多列索引用or分割开的条件, 无论是在or前的条件中的列没有索引,还是后面的列中没有索引,那么涉及的索引都不会被用到。
3索引失效之数据分布影响单列索引或者多列索引如果MySQL评估使用索引比全表更慢,则不使用索引。
4SQL提示use index(索引名)建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估,谁快用谁)
4SQL提示ignore index(索引名)忽略指定的索引
4SQL提示force index(索引名)强制使用索引
5覆盖索引尽量使用覆盖索引,减少select *。 覆盖索引是指 查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。
6索引前缀语法:create index idx_email_5 on tb_user(email(5));索引的选择性求法: select count(distinct substring(email,1,5)) / count(*) from tb_user;
7单列索引与联合索引在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。

索引设计原则

  1. 针对于数据量较大,且查询比较频繁的表建立索引。
  2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引。
  3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高。
  4. 如果是字符串类型的字段,字段的长度较长,可以针对于字段的特点,建立前缀索引。
  5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率。
  6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价也就越大,会影响增删改的效率。
  7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值