视网膜图像语义分割的新方法
1. 采样与输出结构
在视网膜图像语义分割中,采样是重要的一环。采用的简化下采样结构,每次采样后,前一图像尺寸会缩小一半,公式为 (K_{sampling} = 2)。这里有多种下采样方式,如最大下采样、均值下采样等,我们选用的第四种采样模式虽会增加一些参数,但能提高训练过程中的分类准确率。
FCN 是端到端的训练类型,其输出能达到先进水平。它摒弃了传统 CNN 最后两层的全连接结构,采用两个卷积层。卷积层中的神经元仅与输入数据中的局部数据相连,且在卷积序列中共享相同参数,其余为 0,这大大减少了需要训练的参数数量。RI - FCN 能接受任意大小的原始图像,在从原始图像到第一个特征图的过程中,有多个特征层,包括卷积和下采样操作,这与一般卷积神经网络类似,但输出层不同。传统 CNN 在第一到第三特征层包含两个全连接,而 RI - FCN 采用两个卷积层。
2. 可训练特征回溯
特征回溯包括上采样和转置层两部分。当输出图像缩小到原始图像大小的 (1/32^2) 时,可获取每个像素的类别,之后需要特征回溯将空间位置恢复到原始图像。在 RI - FCN 模型中,使用三卷积插值算法作为上采样方法,具有边缘增强效果。目标像素值的计算公式如下:
[f(i + u, j + v) = [A] \cdot [B] \cdot [C]]
其中:
([A] = [S(u + 1)S(u + 0)S(u - 1)S(u - 2)])
[
[B] =
\begin{bmatrix}
f(i - 1, j - 1) & f(i - 1, j + 0) & f(i - 1