流水车间近似算法与基于流形正则化的交互式图像分割
1. 流水车间近似算法的时间复杂度
在流水车间调度问题里,有一种新的近似算法。下面来分析该算法的时间复杂度。
算法会生成所有主要结构,其时间复杂度为 (O(n^{\frac{81}{\varepsilon}}))。对于每个主要结构,会运行过程 H 来生成调度方案。过程 H 的步骤 2 和 3 在线性时间内运行,而步骤 1 是寻找线性规划的可行解,这是该过程的瓶颈,但它是一个多项式时间过程。
每个线性规划最多有 (O(n^{\frac{273}{\varepsilon^3}})) 个变量和 (O(n + \frac{135}{\varepsilon})) 个约束。假设输入规模为 N(N 是关于 n 的多项式),那么可以在时间 (O((n^{\frac{273}{\varepsilon^3}} + n + \frac{527}{\varepsilon})^{1.5}n^{\frac{273}{\varepsilon^3}}N)) 内求解线性规划。由于 (\frac{1}{\varepsilon}) 是常数,所以求解线性规划的复杂度为 (O(n^{2.5}N))。
因此,算法 1 的总运行时间为 (O(n^{2.5+\frac{81}{\varepsilon}}N))。因为 N 是关于 n 的多项式,所以算法 1 在多项式时间内运行。
2. 交互式图像分割问题概述
图像分割旨在将给定图像中的前景和背景分离,是计算机视觉中重要且基础的任务。全自动分割由于用户感兴趣区域不确定,属于固有不适定问题;而手动分割又非常耗时。交互式图像分割则展现出了巨大的实际重要性和广泛的应用。 </