h6j7k8l9p0
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
31、AI安全与从零构建语言模型
本文探讨了使用WikiText2数据集训练小型LLaMA模型的过程,并深入分析了AI安全与对齐问题,包括人口统计学偏差、内容毒性、真实性和错误信息、伦理与社会影响等方面。同时,文章总结了在机器学习和深度学习实践中所掌握的关键技能与成果,涉及计算机视觉、音频处理、推荐系统以及小型大型语言模型的构建。最后,文章展望了未来AI技术的发展方向,并强调了风险缓解策略和政策监管的重要性。原创 2025-08-16 10:06:34 · 22 阅读 · 0 评论 -
30、前馈层激活函数与小型LLaMA模型训练实战
本文详细介绍了神经网络中前馈层的多种激活函数,包括ReLU、GELU、Swish等,并重点探讨了SwiGLU门控激活函数的实现及其在Transformer模型中的应用。基于这些改进,构建了一个轻量级的LLaMA模型(Transformer++),集成了RMSNorm、旋转位置编码(RoPE)、多头注意力机制和SwiGLU前馈层。文章使用WikiText2数据集进行训练,并通过PyTorch实现了完整的训练流程,展示了模型结构、训练过程及性能评估。最后提出了进一步优化模型的建议,并展望了其在自然语言处理任务中原创 2025-08-15 16:52:22 · 21 阅读 · 0 评论 -
29、从头构建语言模型:关键技术与实现
本文详细介绍了从头构建语言模型的关键技术,包括因果注意力机制、Pre-LN与Post-LN Transformer架构对比、层归一化与RMSNorm的实现、多种位置编码方法(如正弦位置编码、分类位置嵌入、相对位置编码和旋转位置编码)。同时,还提供了相关代码实现,并分析了不同技术的适用场景与优势,为构建高效、稳定的语言模型提供全面指导。原创 2025-08-14 09:09:57 · 20 阅读 · 0 评论 -
28、广告与文章排序及语言模型构建案例分析
本文通过两个案例深入探讨了广告与新闻文章排序的实现方法以及基于 Transformer 的语言模型构建。在广告排序部分,介绍了如何使用 TensorFlow 将广告插入新闻推荐系统中的指定位置,并根据优先级进行排序。在语言模型部分,分析了 Transformer 架构的优势、编码器与解码器的区别、训练方法及其在不同 NLP 任务中的应用场景。原创 2025-08-13 14:54:14 · 14 阅读 · 0 评论 -
27、矩阵排序、序列反转与采样方法的案例研究
本文深入探讨了三种数据处理与机器学习中的关键技术:矩阵行排序、填充序列的反转以及基于Gumbel-Max技巧的带权重采样方法。通过具体案例研究,比较了使用`np.lexsort`和`np.unique`实现矩阵行排序的不同方法,提出了适用于TensorFlow和PyTorch的高效序列反转实现,并详细解析了Gumbel-Max采样在缓解类别不平衡问题中的应用。这些方法在实际的数据处理和模型训练中具有重要的参考价值。原创 2025-08-12 16:03:02 · 15 阅读 · 0 评论 -
26、数据处理中的分组、填充、排序与重排方法
本文探讨了数据处理中的关键方法,包括使用 Tensorflow 和 PyTorch 实现分组与应用操作、序列缺失值的填充策略、排序与重排操作的库函数对比,以及获取前 K 个值的不同实现方法和性能分析。通过对比不同方法的优劣和适用场景,帮助开发者选择合适的数据处理技术,提高数据处理效率和准确性,适用于机器学习和深度学习的预处理任务。原创 2025-08-11 09:05:39 · 19 阅读 · 0 评论 -
25、数据处理中的分段聚合与实际应用案例
本文介绍了数据科学和机器学习中的分段聚合操作,涵盖NumPy、Tensorflow和PyTorch中的实现方法,并通过EmbeddingBag和声乐时长约束两个实际案例展示了其应用场景。分段聚合是一种高效的数据处理方式,能够对可变长度元素序列进行归约操作,帮助提升模型构建的性能。文章还提供了具体的代码实现和注意事项,为实际应用提供了指导。原创 2025-08-10 14:55:14 · 13 阅读 · 0 评论 -
24、计算机视觉中的ViT模型与数值分桶技术
本文介绍了Vision Transformer(ViT)在计算机视觉中的应用,特别是用于图像分类任务的实现原理与代码示例,并结合PyTorch框架在MNIST数据集上进行了训练与评估。此外,还详细解析了数值分桶技术的概念、实现方法及其在特征工程中的应用,比较了不同深度学习库中分桶操作的异同,并提供了手动实现分桶的方法。最后总结了ViT与数值分桶的联系及其在实际场景中的潜在应用。原创 2025-08-09 15:51:27 · 15 阅读 · 0 评论 -
23、稀疏输入自编码器与分组操作的实现与应用
本文深入探讨了稀疏输入自编码器的实现方法,以及使用 Pandas 进行分组聚合和分组应用操作的技术细节。同时涵盖了密集张量的重塑与窗口操作,包括时间序列降采样和移动平均值计算等应用场景。通过 TensorFlow 和 PyTorch 展示了不同框架下的实现方式,并对滑动窗口操作在 NumPy、PyTorch 和 TensorFlow 中的实现进行了对比分析。此外,还提供了分组操作在电商用户行为分析和时间序列预测中的实际项目应用示例。这些技术对于提升机器学习模型性能和数据分析效率具有重要意义。原创 2025-08-08 12:30:26 · 13 阅读 · 0 评论 -
22、批量集合操作与稀疏输入自编码器案例研究
本文详细探讨了批量集合操作在多类和多标签分类任务中的应用,介绍了使用NumPy、TensorFlow和Python实现高效集合操作的方法,并通过性能比较实验验证了不同实现的效率。此外,还深入解析了稀疏输入自编码器的原理及其在处理高维稀疏数据中的优势,包括自然语言处理、图像压缩和异常检测等应用场景。文章旨在为处理大规模稀疏数据提供理论支持和技术方案。原创 2025-08-07 15:35:21 · 15 阅读 · 0 评论 -
21、不规则张量:概念、表示与应用
本文详细介绍了不规则张量的概念、表示方法及其在机器学习中的应用。文章探讨了不规则张量与稀疏张量的区别,并展示了多种表示方式,如原生Python列表、NumPy数组、TensorFlow的tf.RaggedTensor和PyTorch的torch.nested.nested_tensor。同时,还介绍了如何使用左对齐稀疏张量处理不规则张量数据,并通过案例研究展示了其在计算Jaccard相似度方面的实际应用。最后,给出了处理不规则张量的一般流程和关键步骤,为处理可变长度序列数据提供了实用的参考。原创 2025-08-06 09:30:14 · 15 阅读 · 0 评论 -
20、基于交替最小二乘法的稀疏矩阵分解:原理与实践
本文详细介绍了基于交替最小二乘法(ALS)的稀疏矩阵分解方法,涵盖正则化项的添加、损失函数推导、辅助函数实现以及完整的训练流程。通过实现用户-物品评分矩阵的分解,该方法可应用于推荐系统中的评分预测任务。使用MovieLens-100k数据集进行实验验证,并通过训练损失和测试损失的可视化评估模型性能。此外,ALS还可拓展至图像像素填充等矩阵补全场景。原创 2025-08-05 14:33:32 · 16 阅读 · 0 评论 -
19、稀疏矩阵:原理、操作与应用详解
本文详细介绍了稀疏矩阵的原理、常见操作及其在不同Python库中的应用。内容涵盖稀疏矩阵的行广播、列广播和索引乘法操作,以及Scipy、TensorFlow和PyTorch对稀疏矩阵的支持和实现方法。此外,还探讨了稀疏矩阵在矩阵分解和ALS算法中的应用,为推荐系统等领域提供了理论和实践指导。原创 2025-08-04 09:37:41 · 14 阅读 · 0 评论 -
18、稀疏矩阵:概念、类型与广播操作详解
本文详细介绍了稀疏矩阵的概念及其在数据科学和推荐系统中的应用。重点解析了Scipy库中七种稀疏矩阵类型(如coo_matrix、csr_matrix、csc_matrix等)的结构、适用场景及性能特点,并提供了不同稀疏矩阵格式之间的构建、转换和操作方法。此外,还讨论了稀疏矩阵的广播操作,包括标量、行和列广播的具体实现方式。最后,通过推荐系统中的矩阵分解示例,展示了稀疏矩阵在实际任务中的应用流程。文章旨在帮助读者根据需求选择合适的稀疏矩阵格式,提高大规模稀疏数据的处理效率和性能。原创 2025-08-03 15:59:24 · 14 阅读 · 0 评论 -
17、机器学习中的特征处理与模型训练实践
本文详细介绍了在机器学习中构建因子分解机(FM)模型的实践过程,包括特征处理、模型训练以及在MovieLens 1M数据集上的应用。同时,还涵盖了正则表达式在文本处理中的优势与示例,以及使用Tensorflow进行数据序列化和反序列化的流程。通过实际代码和流程图展示了各个技术的实现细节,并提供了常见问题的解决方案和进一步探索方向,帮助读者更好地掌握这些关键技术。原创 2025-08-02 10:03:25 · 13 阅读 · 0 评论 -
16、字符串映射与因子分解机的深入解析
本文深入解析了字符串映射为索引的多种方法,包括 np.unique、pd.Categorical、LabelEncoder、tf.lookup 和 torchtext.vocab,并详细比较了它们的优缺点及适用场景。同时,文章介绍了因子分解机(FM)的基本原理及其高效优化方式,并给出了在 TensorFlow 中实现深度因子分解机(DeepFM)的完整代码与解析。最后,结合电商推荐系统的应用示例,展示了字符串映射方法与因子分解机模型在实际中的强大功能。这些内容对于提升数据处理效率和构建高效机器学习模型具有重原创 2025-08-01 12:47:59 · 15 阅读 · 0 评论 -
15、字符串处理:从数据类型到操作实践
本文探讨了在机器学习中处理字符串数据的相关方法和技术,涵盖了多种库如 NumPy、Pandas、TensorFlow 和 PyTorch 的字符串数据类型及其操作。通过实际案例,如日期时间解析和字符串映射到索引,展示了如何对字符串数据进行高效预处理和向量化,为后续的模型训练做准备。此外,还总结了字符串处理中的常见问题及解决方案,旨在帮助开发者更好地应对自然语言处理和其他机器学习任务中的字符串处理挑战。原创 2025-07-31 09:47:44 · 17 阅读 · 0 评论 -
14、FastSpeech2长度调节器模块:解决文本到语音转换中的多对多映射问题
本文详细介绍了FastSpeech2中的长度调节器模块,该模块用于解决文本到语音转换(TTS)中的多对多映射问题。通过重复和散射操作,长度调节器能够将输入文本序列调整为与输出音频序列匹配的长度,并生成对应的掩码信息。文章结合代码实现和流程图,深入解析了其工作原理和应用场景,为理解和优化TTS系统提供了理论与实践支持。原创 2025-07-30 11:29:49 · 14 阅读 · 0 评论 -
13、深度学习中的掩码与填充技术详解
本文详细解析了深度学习中的掩码与填充技术,涵盖了多种填充模式(如常量填充、反射填充、对称填充、边缘填充和环绕填充)及其在不同框架(如NumPy、TensorFlow、PyTorch)中的实现方式。文章还探讨了填充在卷积神经网络、序列长度对齐、缩放点积注意力机制以及可变长度范围生成等场景中的应用,帮助读者全面理解并掌握这些关键技术在深度学习中的实践方法。原创 2025-07-29 15:51:13 · 20 阅读 · 0 评论 -
12、机器学习中的掩码与填充技术详解
本文详细介绍了机器学习中处理可变大小数据的关键技术——掩码与填充。文章涵盖了掩码的多种实现方式,包括三角和对角掩码、使用 where 操作、乘法应用掩码、算术运算作为布尔运算、根据掩码选择元素以及 Top-k 掩码等,并介绍了填充的必要性和实现方法。此外,文章还探讨了这两种技术在自然语言处理、音频处理和图像处理等领域的应用场景。通过合理运用掩码和填充技术,可以有效提升模型的训练效率和性能。原创 2025-07-28 11:03:31 · 18 阅读 · 0 评论 -
11、线性代数中的Einsum及案例研究
本文介绍了线性代数中的Einstein Summation(Einsum)约定,涵盖其显式和隐式模式,并通过多个实际案例(如成对皮尔逊交叉相关、豪斯多夫距离计算和单指数曲线拟合)展示了其应用。同时提供了NumPy、TensorFlow和PyTorch中常见线性代数操作的对比,总结了线性代数在数据分析和科学研究中的优势。原创 2025-07-27 10:45:40 · 23 阅读 · 0 评论 -
10、张量索引与线性代数运算:深入解析与实践
本文深入解析了机器学习和深度学习中的张量索引与线性代数运算,详细介绍了张量索引操作的实现步骤以及常见的线性代数操作如 matmul 和 tensordot 的使用方法和规则。通过代码示例和实际应用案例,帮助读者更好地理解这些操作在神经网络、物理模拟等领域的应用,从而提升张量操作的效率和代码可读性。原创 2025-07-26 16:19:14 · 21 阅读 · 0 评论 -
9、张量索引:Put、Scatter操作及批量散射案例分析
本文深入解析了张量索引中的Put和Scatter操作,涵盖NumPy、PyTorch和Tensorflow等主流深度学习框架。详细介绍了np.put、torch.put、tf.scatter_nd等函数的使用方法,并通过批量散射案例展示了实际应用场景。文章还对不同框架的操作特点进行了对比分析,提供了选择建议和注意事项,帮助开发者更好地理解和应用张量索引与散射技术。原创 2025-07-25 12:15:22 · 18 阅读 · 0 评论 -
8、张量索引操作全解析:从取值到赋值的深度探索
本文深入解析了张量的索引操作,涵盖取值、赋值、放置和散射等关键操作,并通过NumPy、TensorFlow和PyTorch三大常用库的代码示例进行详细说明。内容包括简单切片、沿轴取值、聚集操作、N维聚集、累积赋值、多维数组赋值、扁平索引放置、散射操作等,同时对比了不同库的实现方式并提供了操作选择建议,适用于深度学习与科学计算场景下的张量数据处理。原创 2025-07-24 10:26:52 · 11 阅读 · 0 评论 -
7、张量索引操作全解析
本文深入解析了张量索引操作的核心内容,涵盖布尔索引、切片操作、连续索引获取以及Take和Gather操作。通过具体示例,详细介绍了如何在NumPy、Tensorflow和PyTorch中高效处理张量数据。适合数据分析、机器学习和深度学习领域的开发者参考学习。原创 2025-07-23 10:25:42 · 17 阅读 · 0 评论 -
6、张量索引与幻方构造:原理、方法与应用
本文深入探讨了机器学习和数值计算中的张量索引操作,详细介绍了整数索引、扁平索引与多索引的区别及转换方法,并结合实例解析了不同库(如 NumPy、TensorFlow 和 PyTorch)在索引操作上的差异。同时,文章还介绍了幻方构造的实现方法及其应用场景,通过实际案例展示了索引操作在数据筛选、模型参数更新等方面的应用价值。最后,总结了不同索引方式的优缺点,并展望了其在高效张量计算中的重要作用。原创 2025-07-22 13:08:54 · 9 阅读 · 0 评论 -
4、深入理解张量操作:从基础到高级应用
本文深入讲解了深度学习中的张量操作,涵盖缩减操作、值比较操作、逻辑操作、相邻元素操作、数组反转操作、拼接与分割操作、重塑操作以及广播操作等核心主题。同时,详细对比了Python、NumPy、TensorFlow和PyTorch中相关操作的实现方式,并提供了代码示例和性能比较,为读者全面掌握张量操作提供实用指导。原创 2025-07-20 15:56:50 · 16 阅读 · 0 评论 -
3、并行计算与张量操作全解析
本文深入解析了并行计算的多种范式,包括向量化、多线程、多进程和分布式计算,并详细介绍了张量操作的核心内容,如张量初始化、数据类型、类型转换及常见数学运算。文章对比了Python、NumPy、TensorFlow和PyTorch中的实现方式,结合性能测试和实际案例,展示了如何高效进行科学计算与机器学习开发。同时,提供了数据类型选择、内存预分配、向量化优化等实用技巧,帮助开发者提升计算效率与代码质量。原创 2025-07-19 13:24:02 · 21 阅读 · 0 评论 -
2、向量化计算:并行计算范式的深度解析
本文深入解析了向量化计算这一并行计算范式,通过具体示例展示了其在提升代码运行效率方面的显著效果。同时,对比了向量化与多线程、多进程及分布式计算的优劣,并探讨了它们的适用场景。文章还通过神经网络的密集层实现案例,展示了向量化在机器学习中的关键作用。最后,总结了不同并行计算范式的应用流程,为读者提供了在实际应用中选择合适方法的指导。原创 2025-07-18 12:45:49 · 10 阅读 · 0 评论 -
1、向量计算:高效机器学习算法实现的关键
本文深入探讨了向量计算在机器学习中的重要性,涵盖向量计算的概念、实际应用示例以及与其他并行计算范式的对比。同时,还介绍了张量操作、线性代数运算、稀疏矩阵处理等关键主题,帮助提升机器学习算法的效率和性能。原创 2025-07-17 15:42:25 · 15 阅读 · 0 评论