61、自适应自动流挖掘:AWSOM模型详解与实践

自适应自动流挖掘:AWSOM模型详解与实践

1. 小波变换基础

在信号处理领域,小波变换是一种强大的工具。对于长度为N的时间序列,其N点离散小波变换(DWT)会产生N个小波系数。为了便于理解,我们先从简单的哈尔变换引入小波的概念。

在构建小波变换的每一级l,我们会跟踪两组系数,它们分别关注大小为$2^l$的时间窗口:
- 平滑分量$V_{l,t}$ :由$N/2^l$个尺度系数组成,用于捕获信号的低频分量,特别是频率范围在$[0, 1/2^l]$的部分。
- 细节分量$W_{l,t}$ :由$N/2^l$个小波系数组成,用于捕获信号的高频分量,特别是频率范围在$[1/2^l, 1/2^{l - 1}]$的部分。

构建过程从$V_{0,t} = X_t$开始,$W_{0,t}$未定义。在每次迭代$l = 1, 2, …, \lg N$时,我们对$V_{l - 1,t}$执行两个操作来计算下一级的系数:
- 差分操作 :提取高频部分,公式为$W_{l,t} = (V_{l - 1,2t} - V_{l - 1,2t - 1}) / \sqrt{2}$。
- 平滑操作 :对每对连续值求平均,提取低频部分,公式为$V_{l,t} = (V_{l - 1,2t} + V_{l - 1,2t - 1}) / \sqrt{2}$。

当$W_{l,t}$只包含一个系数时(即$l = \lg N + 1$),停止计算。尺度系数仅在计算的中间阶段需要,最终的小波变换是所有小波系数以及$V_{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值