26、云原生 AI/ML 栈:工具与技术深度解析

云原生 AI/ML 栈:工具与技术深度解析

在当今的科技领域,人工智能和机器学习(AI/ML)正以前所未有的速度发展。为了更高效地管理和应用这些技术,一系列云原生工具应运而生。本文将深入探讨这些工具,包括 KServe、Feast、Milvus 和 Apache Arrow,了解它们如何协同工作,为 AI/ML 工作负载提供支持。

1. KServe 模型服务流程

KServe 作为一个 Kubernetes 原生的模型服务项目,为 AI/ML 工作负载提供了现代应用所需的服务能力。它的服务流程主要包括预处理、预测和后处理三个阶段:
- 预处理 :Transformer Service 将传入的数据转换为模型可用的形式。例如,对于一个预测图片中是否有热狗的模型,Transformer Service 会将传入的图片转换为向量,然后再传递给推理服务。在这个过程中,它还会从特征存储(如 Feast)中加载特征数据。
- 预测 :Transformer Service 将预测工作委托给 Predictor Service。Predictor Service 负责从对象存储中加载模型,并使用提供的特征数据执行模型预测。
- 后处理 :Transformer Service 接收预测结果,并进行必要的后处理,以准备向客户端应用程序发送响应。

2. Feast 全生命周期特征管理

Feast 项目源于 GoJek 的 ML 平台团队的经验。在构建核心 ML 工具后,团队发现数据科学家在将模型投入生产时面临困难,因此需要一种新的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值