darknet预测分类动态库:nan错误

本文深入探讨了%g和%f在浮点数表示上的差异,解释了为何在GPU模式下进行深度学习网络训练时,可能会遇到Model diverged with loss=NaN错误的原因。此外,还提供了避免训练过程中出现Nan值的有效策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

更多文章参考:自己动手实现darknet预测分类动态库

%g和%f区别:

它们都是浮点输入/输出的例子:

%g和%G是科学记数法浮点数%e和%E的简化。

%g将采用可表示为%f(简单浮点数或双精度)或%e(科学记数法)的数字,并将其作为两者中较短的一个返回。

您的打印语句的输出将取决于总和的值。

准确率输出%g,集成到公司软件时,采用GPU模式时,异常输出nan。

因为准确率的值为0-1之间,因此发生NaN的唯一方法是处理不正确的0/0,代码中出现了0/0。

When training on GPU, the error "Model diverged with loss = NaN" is often caused by a sotmax that's getting a symbol larger than vocab_size

参考文献:

训练深度学习网络时候,出现Nan是什么原因,怎么才能避免?

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

haimianjie2012

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值