【无标题】

文章探讨了飞行器的角速度如何用多项式函数描述,特别是在存在圆锥形式的交叉耦合时。通过泰勒级数展开的多子样算法进行误差补偿,以提高导航精度。这种方法对多项式角运动的误差建模更精确,但需满足特定收敛条件。相对于正弦角运动,多项式运动可能导致更大的不可交换误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

运动模型多项式运动圆锥运动
特点飞行器的角速度可以用一个多项式函数来描述飞行器的角速度具有圆锥形式,即角速度不仅随时间变化,而且在不同的轴之间存在交叉耦合关系。
多子样算法类型泰勒级数展开圆锥误差补偿
内容基于泰勒级数展开的多子样算法通常用于多项式角运动环境,通过泰勒级数的截断来实现误差补偿。这种算法简单易用,但需要满足一定的收敛条件才能保证精度通过多个采样点的信息来计算误差补偿系数。这种算法采用了更为复杂的误差模型,能够更准确地补偿圆锥误差,从而提高导航精度。

通常认为正弦角运动比多项式角运动更加恶劣,会激励出更大的不可交换误差
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值