二子样圆锥补偿,初步

矩阵M在二子样圆锥误差补偿算法中起到关键作用,它是一个转移矩阵,用于将姿态矩阵更新表示为等效旋转矢量,便于计算补偿系数。姿态矩阵的更新涉及陀螺仪角速度增量和零偏误差,通过矩阵M转换为姿态矩阵形式,实现误差的精确补偿。矩阵M的计算通常依赖数值方法,并且与时间间隔、角速度和陀螺仪误差相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在二子样圆锥误差补偿算法中,矩阵MMM是一个转移矩阵,用于将姿态矩阵的更新表示为等效旋转矢量的形式,便于计算圆锥误差补偿系数。

具体来说,令Ck−1\boldsymbol{C}{k-1}Ck1表示前一时刻的姿态矩阵,Ck\boldsymbol{C}{k}Ck表示当前时刻的姿态矩阵,Δωk\Delta\boldsymbol{\omega}_kΔωk表示两个采样时刻之间的陀螺仪角速度增量,则根据欧拉角运动学方程,姿态矩阵的更新可以表示为:
在这里插入图片描述
其中,bω,k\boldsymbol{b}_{\omega,k}bω,k表示当前时刻的陀螺零偏误差。

将上式中的exp⁡([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]_{\times})exp([Δωkbω,k]×)表示为等效旋转矢量Φk\boldsymbol{\Phi}_kΦk的形式,可以得到:

在这里插入图片描述
其中,Mk\boldsymbol{M}_kMk是一个转移矩阵,它的作用是将等效旋转矢量Φk\boldsymbol{\Phi}_kΦk转换为姿态矩阵Ck\boldsymbol{C}_kCk的形式。Mk\boldsymbol{M}_kMk可以通过数值计算得到,具体计算方法可以参考相关文献。

总之,矩阵MMM的作用是将等效旋转矢量转换为姿态矩阵的形式,从而便于圆锥误差补偿系数的计算。

补充:
exp⁡([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]{\times})exp([Δωkbω,k]×)中右下角的符号×\times×表示向量的叉积运算。向量a×b\boldsymbol{a}\times\boldsymbol{b}a×b的结果是一个向量,它的大小等于a\boldsymbol{a}ab\boldsymbol{b}b构成的平行四边形的面积,方向垂直于a\boldsymbol{a}ab\boldsymbol{b}b所在的平面,符合右手定则。在姿态矩阵的更新中,exp⁡([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]{\times})exp([Δωkbω,k]×)表示将陀螺仪角速度误差转化为等效旋转矢量的形式,从而实现姿态矩阵的更新。
1
在二子样圆锥误差补偿算法中,矩阵MMM的内容为:
在这里插入图片描述
其中,Δtk\Delta t_kΔtk表示两次采样之间的时间间隔,ωk−1\boldsymbol{\omega}_{k-1}ωk1ωk\boldsymbol{\omega}kωk表示前一时刻和当前时刻的陀螺仪输出角速度,bω,k\boldsymbol{b}{\omega,k}bω,k表示当前时刻的陀螺零偏误差。

矩阵MMM的作用是将等效旋转矢量Φk\boldsymbol{\Phi}_kΦk转换为姿态矩阵Ck\boldsymbol{C}_kCk的形式,具体地,Mk\boldsymbol{M}_kMk可以用于计算姿态矩阵的一阶误差,从而得到圆锥误差补偿系数。矩阵MMM的计算需要通过数值方法进行求解,具体计算方法可以参考相关文献。

补充:
[Δωk−bω,k][\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}][Δωkbω,k]

exp(2)exp(2)exp(2)
exp⁡\expexp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值