在二子样圆锥误差补偿算法中,矩阵MMM是一个转移矩阵,用于将姿态矩阵的更新表示为等效旋转矢量的形式,便于计算圆锥误差补偿系数。
具体来说,令Ck−1\boldsymbol{C}{k-1}Ck−1表示前一时刻的姿态矩阵,Ck\boldsymbol{C}{k}Ck表示当前时刻的姿态矩阵,Δωk\Delta\boldsymbol{\omega}_kΔωk表示两个采样时刻之间的陀螺仪角速度增量,则根据欧拉角运动学方程,姿态矩阵的更新可以表示为:
其中,bω,k\boldsymbol{b}_{\omega,k}bω,k表示当前时刻的陀螺零偏误差。
将上式中的exp([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]_{\times})exp([Δωk−bω,k]×)表示为等效旋转矢量Φk\boldsymbol{\Phi}_kΦk的形式,可以得到:
其中,Mk\boldsymbol{M}_kMk是一个转移矩阵,它的作用是将等效旋转矢量Φk\boldsymbol{\Phi}_kΦk转换为姿态矩阵Ck\boldsymbol{C}_kCk的形式。Mk\boldsymbol{M}_kMk可以通过数值计算得到,具体计算方法可以参考相关文献。
总之,矩阵MMM的作用是将等效旋转矢量转换为姿态矩阵的形式,从而便于圆锥误差补偿系数的计算。
补充:
exp([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]{\times})exp([Δωk−bω,k]×)中右下角的符号×\times×表示向量的叉积运算。向量a×b\boldsymbol{a}\times\boldsymbol{b}a×b的结果是一个向量,它的大小等于a\boldsymbol{a}a和b\boldsymbol{b}b构成的平行四边形的面积,方向垂直于a\boldsymbol{a}a和b\boldsymbol{b}b所在的平面,符合右手定则。在姿态矩阵的更新中,exp([Δωk−bω,k]×)\exp([\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}]{\times})exp([Δωk−bω,k]×)表示将陀螺仪角速度误差转化为等效旋转矢量的形式,从而实现姿态矩阵的更新。
1
在二子样圆锥误差补偿算法中,矩阵MMM的内容为:
其中,Δtk\Delta t_kΔtk表示两次采样之间的时间间隔,ωk−1\boldsymbol{\omega}_{k-1}ωk−1和ωk\boldsymbol{\omega}kωk表示前一时刻和当前时刻的陀螺仪输出角速度,bω,k\boldsymbol{b}{\omega,k}bω,k表示当前时刻的陀螺零偏误差。
矩阵MMM的作用是将等效旋转矢量Φk\boldsymbol{\Phi}_kΦk转换为姿态矩阵Ck\boldsymbol{C}_kCk的形式,具体地,Mk\boldsymbol{M}_kMk可以用于计算姿态矩阵的一阶误差,从而得到圆锥误差补偿系数。矩阵MMM的计算需要通过数值方法进行求解,具体计算方法可以参考相关文献。
补充:
[Δωk−bω,k][\Delta\boldsymbol{\omega}k - \boldsymbol{b}{\omega,k}][Δωk−bω,k]
exp(2)exp(2)exp(2)
exp\expexp