- 博客(49)
- 收藏
- 关注
原创 Python打卡训练营day45——2025.06.05
对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。
2025-06-05 23:25:58
271
原创 Python打卡训练营day44——2025.06.04
尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同。尝试通过ctrl进入resnet的内部,观察残差究竟是什么。
2025-06-04 23:25:46
113
原创 Python打卡训练营day40——2025.05.30
作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。这个模型结构是一个简单的全连接神经网络,用于处理输入大小为 28×28(即 784 个特征)的数据,通常用于 MNIST 手写数字识别任务。dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。彩色和灰度图片测试和训练的规范写法:封装在函数中。
2025-05-30 22:17:28
338
原创 Python打卡训练营day33——2025.05.22
1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。2. 回归任务中,标签需转为float类型(如torch.float32)。作业:今日的代码,要做到能够手敲。这已经是最简单最基础的版本了。查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。
2025-05-22 23:07:37
464
原创 python打卡训练营day32————2025.05.21
作业:参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。官方文档的阅读和使用:要求安装的包和文档为同一个版本。官方文档的检索方式:github和官网。绘图的理解:对底层库的调用。普通方法所需要的参数。
2025-05-21 23:28:39
233
原创 Python打卡训练营day30——2025.05.19
自己新建几个不同路径文件尝试下如何导入。3、非标准导入:导入整个库。1、标准导入:导入整个库。2、从库中导入特征项。
2025-05-19 23:15:57
252
原创 Python打卡训练营day29——2025.05.18
目标:自动记录类的初始化和方法调用。目标:确保一个类只能创建一个实例。三、进阶:带参数的类装饰器。二、方法调用日志装饰器。
2025-05-18 23:26:25
152
原创 Python打卡训练营day28——2025.05.17
calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。
2025-05-17 23:37:56
328
原创 Python打卡训练营day21——2025.05.10
对于像 MNIST 手写数字这样的典型例子,PCA 往往倾向于展示较为模糊的整体趋势;而 t-SNE 则能清晰地区分各个类别形成紧凑且分离良好的群组3。然而需要注意的是,由于 t-SNE 过程引入了一定程度的随机性和敏感参数调整依赖性强等问题,可能导致重复运行结果不完全一致。通过减少数据的维度,不仅可以降低计算复杂度,还能帮助揭示隐藏在高维数据中的结构和模式1。能够更好地反映样本间的簇状关系,尤其擅长处理复杂的非线性边界。t-SNE 和 PCA 的可视化效果对比。降维技术的应用场景与主要用途。
2025-05-10 23:13:19
215
原创 python打卡训练营day13—2025.05.02
从示例代码可以看到 效果没有变好,所以很多步骤都是理想是好的,但是现实并不一定可以变好。这个实验仍然有改进空间,如下。1. 还没做smote+过采样+修改权重的组合策略,有可能一起做会变好。2. 还没有调参,有可能调参后再取上述策略可能会变好。不平衡数据集的处理策略:过采样、修改权重、修改阈值。
2025-05-02 21:25:59
225
原创 python打卡训练营day12一2025.05.01
原理:模拟金属“退火”过程(高温时原子随机运动,降温时逐渐固定成低能量稳定结构),通过“随机搜索+降温”找到最优解。原理:模拟鸟群集体找食物,每个“粒子”(鸟)记住自己和群体的最优位置,调整飞行方向,共同逼近目标。1. 高温时(初始阶段),弹珠可以随意滚动,甚至能爬上小坡(接受差解,避免困在局部最优)。3. 让留下来的小人“生孩子”(复制路径),生孩子时可能“基因突变”(路径微调)。2. 让小人走迷宫,淘汰走得慢的(淘汰差解),留下走得快的(保留优解)。1. 随机生成一群“虚拟小人”(初始解,路径随机)。
2025-05-01 23:21:08
338
原创 Python打卡训练营day11——2025.04.30
对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索。贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)time库的计时模块,方便后人查看代码运行时长。
2025-04-30 22:33:14
194
原创 Python打卡训练营day10——2025.04.29
2. 机器学习模型建模的三行代码。3. 机器学习模型分类问题的评估。1. 数据集的划分。
2025-04-29 22:32:21
304
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人