自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(49)
  • 收藏
  • 关注

原创 Python打卡训练营day50——2025.06.10

【代码】Python打卡训练营day50——2025.06.10。

2025-06-11 00:37:12 206

原创 Python打卡训练营day49——2025.06.09

作业:尝试对今天的模型检查参数数目,并用tensorboard查看训练过程。

2025-06-10 00:25:42 162

原创 Python打卡训练营day47——2025.06.07

作业:对比不同卷积层热图可视化的结果。

2025-06-07 23:51:00 195

原创 Python打卡训练营day46——2025.06.06

知识点回顾: @浙大疏锦行

2025-06-06 23:52:33 1548

原创 Python打卡训练营day45——2025.06.05

对resnet18在cifar10上采用微调策略下,用tensorboard监控训练过程。

2025-06-05 23:25:58 271

原创 Python打卡训练营day44——2025.06.04

尝试在cifar10对比如下其他的预训练模型,观察差异,尽可能和他人选择的不同。尝试通过ctrl进入resnet的内部,观察残差究竟是什么。

2025-06-04 23:25:46 113

原创 Python打卡训练营day43——2025.06.02

【代码】Python打卡训练营day43——2025.06.02。

2025-06-02 22:11:07 154

原创 Python打卡训练营day42——2025.06.01

知识点回顾。

2025-06-02 00:26:18 507

原创 Python打卡训练营day41——2025.05.31

尝试手动修改下不同的调度器和CNN的结构,观察训练的差异。

2025-05-31 22:52:12 217

原创 Python打卡训练营day40——2025.05.30

作业:仔细学习下测试和训练代码的逻辑,这是基础,这个代码框架后续会一直沿用,后续的重点慢慢就是转向模型定义阶段了。这个模型结构是一个简单的全连接神经网络,用于处理输入大小为 28×28(即 784 个特征)的数据,通常用于 MNIST 手写数字识别任务。dropout操作:训练阶段随机丢弃神经元,测试阶段eval模式关闭dropout。展平操作:除第一个维度batchsize外全部展平。彩色和灰度图片测试和训练的规范写法:封装在函数中。

2025-05-30 22:17:28 338

原创 Python打卡训练营day39——2025.05.29

【代码】Python打卡训练营day39——2025.05.29。

2025-05-29 23:10:19 221

原创 Python打卡训练营day38——2025.05.27

了解下cifar数据集,尝试获取其中一张图片。

2025-05-28 23:50:55 272

原创 Python打卡训练营day37——2025.05.26

对信贷数据集训练后保存权重,加载权重后继续训练50轮,并采取早停策略。

2025-05-26 23:52:58 155

原创 Python打卡训练营day36——2025.05.25

【代码】Python打卡训练营day36——2025.05.25。

2025-05-25 22:36:44 211

原创 Python打卡训练营day35——2025.05.24

【代码】Python打卡训练营day35——2025.05.24。

2025-05-25 00:35:47 138

原创 Python打卡训练营day34——2025.05.23

【代码】Python打卡训练营day34——2025.05.23。

2025-05-23 22:16:39 130

原创 Python打卡训练营day33——2025.05.22

1. 分类任务中,若标签是整数(如 0/1/2 类别),需转为long类型(对应 PyTorch 的torch.long),否则交叉熵损失函数会报错。2. 回归任务中,标签需转为float类型(如torch.float32)。作业:今日的代码,要做到能够手敲。这已经是最简单最基础的版本了。查看显卡信息的命令行命令(cmd中使用)数据预处理(归一化、转换成张量)PyTorch和cuda的安装。继承nn.Module类。定义损失函数和优化器。

2025-05-22 23:07:37 464

原创 python打卡训练营day32————2025.05.21

作业:参考pdpbox官方文档中的其他类,绘制相应的图,任选即可。官方文档的阅读和使用:要求安装的包和文档为同一个版本。官方文档的检索方式:github和官网。绘图的理解:对底层库的调用。普通方法所需要的参数。

2025-05-21 23:28:39 233

原创 Python打卡训练营day31——2025.05.20

尝试针对之前的心脏病项目,准备拆分的项目文件,思考下哪些部分可以未来复用。

2025-05-20 22:00:37 233

原创 Python打卡训练营day30——2025.05.19

自己新建几个不同路径文件尝试下如何导入。3、非标准导入:导入整个库。1、标准导入:导入整个库。2、从库中导入特征项。

2025-05-19 23:15:57 252

原创 Python打卡训练营day29——2025.05.18

目标:自动记录类的初始化和方法调用。目标:确保一个类只能创建一个实例。三、进阶:带参数的类装饰器。二、方法调用日志装饰器。

2025-05-18 23:26:25 152

原创 Python打卡训练营day28——2025.05.17

calculate_perimeter():计算周长(公式:2×(长+宽))。is_square() 方法,判断是否为正方形(长 == 宽)。calculate_circumference():计算圆的周长(公式:2πr)。shape_type="rectangle":创建长方形(参数:长、宽)。calculate_area():计算圆的面积(公式:πr²)。shape_type="circle":创建圆(参数:半径)。calculate_area():计算面积(公式:长×宽)。

2025-05-17 23:37:56 328

原创 Python打卡训练营day27——2025.05.16

编写一个装饰器 logger,在函数执行前后打印日志信息(如函数名、参数、返回值)

2025-05-16 23:39:16 130

原创 Python打卡训练营day26——2025.05.15

【代码】Python打卡训练营day26——2025.05.15。

2025-05-15 23:58:49 134

原创 Python打卡训练营day25——2025.05.15(补)

【代码】Python打卡训练营day25——2025.05.15。

2025-05-15 23:54:31 215

原创 Python打卡训练营day24——2025.05.13

知识点回顾: @浙大疏锦行

2025-05-13 23:46:33 268

原创 Python打卡训练营day23——2025.05.12

整理下全部逻辑的先后顺序,看看能不能制作出适合所有机器学习的通用pipeline。

2025-05-12 23:51:56 226

原创 Python打卡训练营day22——2025.05.11

【代码】Python打卡训练营day22——2025.05.11。

2025-05-12 00:09:47 245

原创 Python打卡训练营day21——2025.05.10

对于像 MNIST 手写数字这样的典型例子,PCA 往往倾向于展示较为模糊的整体趋势;而 t-SNE 则能清晰地区分各个类别形成紧凑且分离良好的群组3。然而需要注意的是,由于 t-SNE 过程引入了一定程度的随机性和敏感参数调整依赖性强等问题,可能导致重复运行结果不完全一致。通过减少数据的维度,不仅可以降低计算复杂度,还能帮助揭示隐藏在高维数据中的结构和模式1。能够更好地反映样本间的簇状关系,尤其擅长处理复杂的非线性边界。t-SNE 和 PCA 的可视化效果对比。降维技术的应用场景与主要用途。

2025-05-10 23:13:19 215

原创 python打卡训练营day20——2025.05.09

作业:尝试利用svd来处理心脏病预测,看下精度变化。

2025-05-09 23:46:15 212

原创 Python打卡训练营day19——2025.05.08(补)

【代码】Python打卡训练营day19——2025.05.08(补)

2025-05-09 12:26:05 214

原创 Python打卡训练营day18——2025.05.07

码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。

2025-05-07 23:16:37 129

原创 Python打卡训练营day17——2025.05.06

作业: 对心脏病数据集进行聚类。

2025-05-06 23:32:29 126

原创 Python打卡训练营day15——2025.05.05

【代码】Python打卡训练营day15——2025.05.05。

2025-05-05 23:47:18 691

原创 python打卡训练营day15—2025.05.04

【代码】python打卡训练营day15—2025.05.04。

2025-05-04 21:05:40 157

原创 python打卡训练营day14—2025.05.03

【代码】python打卡训练营day14—2025.05.03。

2025-05-03 22:53:05 136

原创 python打卡训练营day13—2025.05.02

从示例代码可以看到 效果没有变好,所以很多步骤都是理想是好的,但是现实并不一定可以变好。这个实验仍然有改进空间,如下。1. 还没做smote+过采样+修改权重的组合策略,有可能一起做会变好。2. 还没有调参,有可能调参后再取上述策略可能会变好。不平衡数据集的处理策略:过采样、修改权重、修改阈值。

2025-05-02 21:25:59 225

原创 python打卡训练营day12一2025.05.01

原理:模拟金属“退火”过程(高温时原子随机运动,降温时逐渐固定成低能量稳定结构),通过“随机搜索+降温”找到最优解。原理:模拟鸟群集体找食物,每个“粒子”(鸟)记住自己和群体的最优位置,调整飞行方向,共同逼近目标。1. 高温时(初始阶段),弹珠可以随意滚动,甚至能爬上小坡(接受差解,避免困在局部最优)。3. 让留下来的小人“生孩子”(复制路径),生孩子时可能“基因突变”(路径微调)。2. 让小人走迷宫,淘汰走得慢的(淘汰差解),留下走得快的(保留优解)。1. 随机生成一群“虚拟小人”(初始解,路径随机)。

2025-05-01 23:21:08 338

原创 Python打卡训练营day11——2025.04.30

对于信贷数据的其他模型,如LightGBM和KNN 尝试用下贝叶斯优化和网格搜索。贝叶斯优化(2种实现逻辑,以及如何避开必须用交叉验证的问题)随机搜索(简单介绍,非重点 实战中很少用到,可以不了解)time库的计时模块,方便后人查看代码运行时长。

2025-04-30 22:33:14 194

原创 Python打卡训练营day10——2025.04.29

2. 机器学习模型建模的三行代码。3. 机器学习模型分类问题的评估。1. 数据集的划分。

2025-04-29 22:32:21 304

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除