自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(548)
  • 资源 (3)
  • 收藏
  • 关注

原创 知识蒸馏与图注意力转换器相结合的控制器局域网入侵检测系统

现代车辆包含许多电子控制单元 (ECU),它们管理车辆的几乎所有功能,从发动机性能到高级驾驶员辅助系统 (ADAS),例如车道偏离警告 (LDW) 和自适应巡航控制 (ACC)。控制器局域网 (CAN) 协议于 1980 年代中期引入用于车载网络 (IVN),以其可靠性、成本效益和稳健性而闻名[

2025-08-11 07:07:40 283

原创 网络空间安全体系的分层防御原理

本文解析了网络空间安全体系的分层防御原理、核心技术架构及未来趋势。主要内容包括:1)五层纵深防御模型(物理层至数据层)及零信任架构;2)六维环境感知防火墙、全同态加密等关键技术的工作原理;3)抗量子密码、大模型安全架构等前沿技术方向;4)电力SCADA、零信任企业网等典型应用场景。文章还梳理了CSAF、ISO27032等核心标准框架,并展望了AI攻防博弈、天地一体化安全等未来趋势。

2025-08-11 07:07:10 457

原创 探索逼真的会说话头像视频中的生物识别验证场景

近年来,生成逼真头像的新方法激增可以使用单个图像或文本提示创建高质量的 3D 人体头像并为其制作动画。与此同时,行业对头像技术的投资呈爆炸式增长,Synthesia 等公司获得数亿美元的资金来扩展被超过 100 万用户使用的 Avatar 服务。另一个值得注意的例子是 Meta33提供付费用户捕捉他们的面部表情、语音和手势以训练其编解码器头像模型这些逼真的会说话头像在虚拟会议、游戏和元宇宙平台中越来越受欢迎。

2025-08-11 07:06:19 399

原创 RPU的工作原理、过程流程图和架构拓扑图、案例及详细配置

本文介绍了三类RPU(射频增强型、实时处理型、可重构计算型)的工作原理、架构特点及应用场景。射频增强型RPU通过数字补偿技术提升信号质量,实时处理型RPU基于Arm Cortex-R5F实现低延迟响应,可重构RPU则能动态配置计算资源。文章详细分析了各类RPU的架构设计,包括数模混合接口、AI引擎、双核架构等技术实现,并给出了Wi-Fi覆盖、工业控制和AI推理等典型应用案例的性能数据。最后指出AI深度融合、消费电子渗透和开源生态建设是RPU技术发展的主要趋势与挑战。

2025-08-11 07:06:04 659

原创 实现高效、平衡的多任务学习,实现多智能体感知和预测

图 1:多智能体感知和预测任务的手动训练策略与TurboTrain范式的比较。与复杂的手动训练策略不同,TurboTrain在训练中高效稳定,性能和泛化性更好。自动驾驶系统与人类驾驶员类似,在遮挡或感知范围有限的环境中面临重大的安全挑战[39241430].多代理系统通过利用车联网 (V2X) 通信使联网和自动驾驶汽车 (CAV) 以及基础设施单元能够共享互补信息来缓解这些限制[612879].最近的进展已经将多智能体范式从单帧任务(例如检测)扩展了[2719]到多帧时间任务(例如。

2025-08-11 07:05:52 445

原创 多任务 Transformer 模型的高效任务间注意力

然而,对于多任务学习,与单任务模型相比,可能需要更多的查询,考虑到实际的硬件限制,它的多头注意力通常接近计算可行的极限。图2:一个查询的可变形任务间自注意力的图示qh,w从任务t.任务的特征图t左侧包含位置查询(h,w),所有任务的特征金字塔(绿色和红色张量)是可变形注意力的输入,右侧的输出包含用于查询的细化特征qh,w的任务t在 ITSA 之后。然而,在我们的例子中,由于我们使用的是卷积主干,并在其提取的特征上应用了可变形注意力,因此这对我们来说不是问题,并且我们观察到遵循更简单的方法的强结果[

2025-08-11 07:05:41 954

原创 网络安全态势感知技术的全维度解析、数据采集、态势理解、态势评估、态势预测、响应闭环原理、过程流程图、架构拓扑图-3

text{知识图谱} & 28TB & \text{Neo4j/JanusGraph} \\。\text{响应控制} & 3.4M & \text{Java/Kotlin} \\。\text{模块} & \text{代码行数} & \text{技术栈} \\。\text{数据采集} & 4.8M & \text{Rust/C++} \\。"MTTD": "23秒", // 平均检测时间。"MTTR": "78秒", // 平均响应时间。"自动化覆盖率": "92%",

2025-08-11 07:05:19 675

原创 网络生存模型工作原理和架构及案例

网络生存模型通过冗余代偿、动态信任评估与闭环优化三大核心机制,实现从“脆弱防御”到韧性服务的转变。当前主流架构涵盖P2P分布式(如JXTA/Kademlia)、分层协同(如IATF/GMPLS)及数学评估模型(如SPN),在电网、金融云、移动生态中验证了其高可用价值。未来需突破弹性适应与跨域协同瓶颈,通过AI+零信任构建下一代自适应生存架构。

2025-08-10 06:28:45 607

原创 时空记忆的占用学习

近年来,以视觉为中心的 3D 占用表示引起了人们对自动驾驶的极大兴趣[

2025-08-10 06:28:25 714

原创 网络安全态势感知技术的全维度解析、数据采集、态势理解、态势评估、态势预测、响应闭环原理、过程流程图、架构拓扑图-4

!威胁情报:STIX/TAXII协议,熵值加权可信度资产数据:CMDB拓扑关联,CVSS 3.1漏洞评分行为数据:UEBA异常检测,LSTM时序建模WebGL实时渲染:Three.js热力粒子系统自适应分级:Jenks自然断裂算法时空衰减模型:λ(t)=λ0⋅e−βtλ(t)=λ0​⋅e−βt。

2025-08-10 06:28:10 520

原创 网络安全态势感知的全生命周期拓扑以采集→分析→预测→响应-闭环 “动态路由+智能预测+分级响应”,感知-响应”向“预测-自治”演进,从检测到响应的自动化决策链条拓扑图技术原理和核心架构技术和智能技术

!以下是以为核心的网络安全态势感知全生命周期拓扑解析,实现从向的演进。通过模块化扩展框架,可实现。

2025-08-10 06:27:58 490

原创 RPU的工作原理、过程流程图和架构拓扑图、案例及详细配置

RPU技术发展与应用前景分析 RPU(处理单元)涵盖射频增强、实时处理与可重构三大类型,通过创新架构突破性能边界。射频RPU采用数字预失真(DPD)和AI动态补偿技术,显著提升信号质量(如Wi-Fi穿墙能力增强10倍);实时RPU基于双核锁步设计(中断延迟<20ns)保障工业控制可靠性;可重构RPU通过数据流驱动计算,能效达GPU的10倍。典型应用包括全屋Wi-Fi覆盖(200㎡单路由)、机械臂控制(周期≤100μs)和自动驾驶感知(5TOPS/W)。技术趋势聚焦AI融合与多场景自适应架构,但面临工具

2025-08-09 00:19:33 737

原创 天基导弹防御系统的工作原理、架构拓扑图总结

技术驱动:AI/量子计算重塑预警-决策-拦截链条,推动拦截成功率突破概率防御临界点。战略平衡:太空军事化引发新一轮军备竞赛(如俄“先锋”导弹20马赫变轨),迫使防御系统持续迭代9。伦理争议:《外空条约》修订迫在眉睫,需规范太空武器化与商业卫星军事化应用8。“矛与盾”的终极博弈:东风-41分导式弹头与“金穹”30万枚拦截弹的对抗,实为大国科技与资源的全方位竞争——当突防成本远低于防御投入时,战略威慑的本质仍是制衡而非绝对安全。

2025-08-09 00:19:21 658

原创 太空态势感知(SSA)系统原理、架构拓扑图总结

!太空态势感知(SSA)系统是维护太空安全、支持太空作战管理的核心基础设施,其核心在于对地球轨道上所有人造物体(包括卫星、碎片、失效载荷等)的探测、跟踪、识别、预测与威胁评估。

2025-08-09 00:19:10 480

原创 MI9 - 代理智能协议:代理 AI 系统的运行时治理

随着大型语言模型 (LLM) 越来越多地发展成为代理系统,它们带来了仅在运行时才会出现的治理挑战。与传统人工智能不同,这些系统计划、修改目标、召回记忆和协调工具使用,从而模糊了推理和自主行动之间的界限。最关键的对齐风险——递归规划循环、目标漂移、级联工具链——是动态出现的,并且无法通过部署前控制方法。军情九处通过在关键决策边界实现实时监督和干预来解决这一差距。在此过程中,它提供了支持核心对齐目标所需的运行时基础设施:部署代理系统中的可准确性、安全委派和行为监督。

2025-08-09 00:19:00 621

原创 PADIMEE模型工作原理和架构及案例

PADIMEE模型通过七阶段闭环将安全从“静态防护”转化为动态治理工程前置设计:在系统建设初期嵌入安全(如网络分区),降低后期整改成本;风险驱动:以量化评估指导防护资源倾斜,避免均匀投入的浪费;人技结合:教育环节弥补技术盲区,减少人为失误134。未来需结合AI与零信任架构,提升对云环境和新型威胁的适应性。

2025-08-09 00:18:42 723

原创 空间安全未来技术有哪些

​:空间安全正从“被动避让”转向“智能免疫”,其技术内核是 ​。

2025-08-08 21:55:39 503

原创 从单点到多维:网络指纹技术的演进与多维融合原理白皮书

转向设备本身的硬件特征,包括iOS的IDFA(广告标识符)、Android的IMEI(国际移动设备识别码)和MAC地址等。作为补充标识手段被广泛应用,但随着动态IP分配技术、NAT(网络地址转换)以及大规模代理服务的普及,IP作为设备标识的分辨率和准确度急剧下降——同一IP可能对应数百台设备,而单一设备在不同时间的IP可能完全不同1。包括触控手势的加速度曲线(触摸屏设备)、键盘敲击的时延分布(物理键盘)、设备握持姿态(陀螺仪数据)、应用切换序列等。的回应——如何在开放互联的环境中建立可靠的身份信任体系。

2025-08-08 21:10:45 624

原创 MG-SOFT NetConf Browser客户端软件-Windows版

欢迎使用网Conf客户端软件-Windows版,这是一款专为网络管理而设计的轻量级Netconf连接工具。NetConf协议作为一种网络配置管理协议,广泛应用于现代网络设备的配置、监控和管理之中。本软件旨在简化网络管理员的工作流程,提供便捷的Netconf协议交互界面,非常适合于进行软件的功能测试、网络设备配置验证等场景。

2025-08-08 10:48:33 432

原创 使用事件摄像机进行无人机检测

传统的监控系统,特别是传统的基于帧的摄像机,由于体积小、敏捷性高,以及在具有挑战性的照明条件下导致的运动模糊和性能不佳,因此难以可靠地检测这些目标。其中每个边界框由其左上角定义(x^k,y^k),其宽度w^k高度h^k和关联的时间戳t^k. 检测器在输入上运行我t,它可以是事件流,也可以是事件流的组合ℰ和相应的 RGB 流𝒱,在持续时间的时态窗口内收集Δ在检测时结束t.一次的所有检测t必须仅基于目前可用的数据t,无法访问任何未来信息。]相反,提出了唯一公开可用的基于事件的无人机预测基准。

2025-08-08 09:12:43 663

原创 世界最全人工智能模型最详细算法、用途说明

2025-08-08 00:36:58 447

原创 VRRP的工作原理、详细流程图和架构及案例

解决网关单点故障,保障业务连续性。

2025-08-08 00:36:42 360

原创 数据安全能力成熟度模型工作原理和架构及案例

DSMM以生命周期为经、能力建设为纬、成熟度进阶为轴风险驱动:通过30个PA精准定位脆弱环节(如滴滴暴露的恢复能力缺陷)67;行业适配:金融业重交换脱敏(PA24)、制造业强采集质量(PA04)310;合规必选:随《数据安全法》落地,DSMM成为企业合规核心标尺15。未来趋势:结合AI(预测性风险建模)与零信任(动态访问控制),推动DSMM从“合规达标”向智能免疫演进。

2025-08-08 00:36:18 952

原创 APPDRR模型工作原理和架构及案例

APPDRR模型通过前置风险评估与事后恢复优化,解决了传统PDR模型的静态缺陷,尤其适合金融、医疗、能源等高合规场景。其核心价值在于将安全转化为“持续演进的过程”,但需结合自动化工具与跨部门协同以克服实施瓶颈。未来可探索与AI、零信任架构的深度融合,提升威胁预测与自适应能力。

2025-08-08 00:35:58 790

原创 WPDRRC模型工作原理和架构及案例

WPDRRC模型通过预警前置化与反击主动化,构建了符合中国国情的动态安全防护体系。其在金融、能源、教育等领域的成功实践,证明了其在关键基础设施防护中的价值。未来需结合AI与零信任架构,进一步强化对云原生环境及新型威胁的适应性,为数字化时代的信息安全提供闭环保障。

2025-08-07 00:01:26 667

原创 IATF信息保障技术模型工作原理和架构及案例

IATF以“纵深防御”为骨、“人技操协同”为脉,通过四层技术域的体系化布防,成为现代安全工程的基石。其在关键基础设施(电网、交通)的成功印证了框架的普适性,未来需在动态策略生成(如零信任)、自动化响应(AI+SOAR)、业务融合(风险量化)三方面持续进化,以应对云化与高级威胁的挑战。

2025-08-07 00:01:14 864

原创 BPU的工作原理、过程流程图和架构拓扑图、案例及详细配置

摘要:本文系统解析三种BPU(分支处理单元、AI大脑处理单元、电池保护单元)的工作原理与技术特性。CPUBPU通过动态分支预测(BHT/BTAC)提升流水线效率;AIBPU(如地平线旭日3)采用矩阵引擎和算子融合实现高效张量运算;电池BPU通过实时监测(±0.01V精度)实现10ms级保护响应。典型案例包括征程5芯片(128TOPS算力)的自动驾驶部署和BMS阈值动态补偿。技术演进呈现三大趋势:神经网络预测器优化CPU分支、Chiplet架构突破内存墙、AI算法增强电池管理,覆盖计算精度(INT8/FP16

2025-08-07 00:00:48 273

原创 太空军作战体系与平台原理、架构拓扑图总结

2025-08-07 00:00:36 1231

原创 美国空间安全防御系统有哪些、详细阐述原理和架构图

美国于2025年5月正式启动“金穹”计划,旨在构建覆盖导弹“发射前-助推段-中段-末段”的全流程拦截体系,应对弹道导弹、高超音速武器等新型威胁,实现本土“绝对安全”

2025-08-06 21:58:12 1436

原创 网络空间测绘与防御理论模型工作原理、逻辑过程流程图和架构拓扑图

《网络空间测绘与防御理论模型》提出了一套完整的网络空间安全框架,融合测绘理论与动态防御机制。核心内容包括五层本体论模型(地理至人物层)、"三层三空间"测绘理论(地图层至对抗层)和"测不到、测不准、绘不对"防御目标。技术实现涵盖主动/被动探测、资产关联分析、三维可视化呈现,以及指纹混淆、拓扑欺骗等抗测绘手段。通过电网、金融等关键基础设施的验证案例,证明该模型能将攻击成功率从78%降至32%,响应时间缩短至8分钟。文档符合国际安全标准,适用于关基防护和网络作战场景,并展望

2025-08-06 00:04:40 619

原创 空间-地面一体化防御架构原理、架构拓扑图和流程图

!以下为空间-地面一体化防御架构的全面解析,综合战略框架、技术原理、系统组成及前沿趋势,依据权威军事研究及国际实践系统梳理。篇幅所限,此为精要框架(完整体系超500万字),可通过文献索引深入扩展。

2025-08-06 00:04:29 795

原创 深度学习人脸检测的后门攻击

本文首次研究了针对人脸检测系统的后门攻击,提出人脸生成攻击和地标偏移攻击两种新型攻击方式。研究表明,通过在训练数据中注入特定触发器,攻击者可成功毒害RetinaFace等单阶段人脸检测器:人脸生成攻击可实现95%以上的攻击成功率,使检测器将触发器误认为真实人脸;地标偏移攻击则能操纵面部关键点回归,成功率高达99%。实验证明,这两种攻击会显著影响下游人脸对齐和反欺骗任务,导致反欺骗系统的错误接受率提升至97.6%。研究揭示了当前人脸识别系统在早期检测模块的安全性缺陷,建议采用辅助检测器和几何一致性检查等防御措

2025-08-06 00:04:14 796

原创 威胁情报与分析平台原理、过程流程图、架构拓扑图

威胁情报平台技术解析 威胁情报平台通过多源数据融合→AI分析→自动化响应→持续进化实现主动防御。核心包括: 动态感知:整合网络流量、日志等数据,采用无监督学习(如IsolationForest)检测异常行为,图神经网络(GNN)预测攻击链。 实时响应:强化学习生成防御策略(延迟<200ms),双通道防护(加密+行为拦截)。 持续进化:对抗训练提升模型鲁棒性,联邦学习实现跨组织协同防御。 应用案例:金融防勒索(检出率95%)、电网零信任(国密加密延迟<20ms)、预测性防御(MTTD降35%)。

2025-08-06 00:04:04 935

原创 AI如何识别攻击模式,包括使用监督学习、非监督学习、深度学习(如RNN、CNN、Transformer)和图神经网络(GNN)等不同AI模型来检测已知和未知威胁的工作原理、逻辑流程图、架构拓扑图和详细

大家读完觉得有帮助记得关注和点赞!!!以下是针对AI识别攻击模式的系统性解析,涵盖技术原理、模型应用、系统架构及实际案例,结合最新研究成果进行深度阐述:1. 监督学习:已知攻击的精准分类工作原理:基于标注样本训练分类模型,识别已知攻击特征。典型模型:多层感知机(MLP):用于DDoS检测,输入层19个神经元对应流量特征(如包速率、源IP分散度),准确率可达100%26。集成学习(AdaBoost-GA):通过遗传算法优化特征选择,在云安全中检测DDoS攻击,精度显著高于传统方法6。案例:XSS检测系统结合C

2025-08-05 00:10:19 656

原创 APT-自适应路径追踪改进用于高分辨率图像生成扩散模型

大家读完觉得有帮助记得关注和点赞!!!抽象潜在扩散模型 (LDM) 通常以固定分辨率进行训练,这限制了它们在扩展到高分辨率图像时的能力。 虽然基于训练的方法通过在高分辨率数据集上进行训练来解决这一限制,但它们需要大量数据和大量计算资源,因此不太实用。 因此,免训练方法,特别是基于补丁的方法,已成为一种流行的替代方案。 这些方法将图像划分为多个补丁,并融合每个补丁的去噪路径, 在高分辨率生成方面表现出强大的性能。 然而,我们观察到基于补丁的方法的两个关键问题,我们称之为“补丁级分布偏移”和“补丁单调性增加”。

2025-08-05 00:10:08 927

原创 实时识别和威慑勒索软件攻击

勒索软件 (RW) 已成为最具破坏性和持久性的网络犯罪形式之一。与通常优先考虑隐身的传统恶意软件不同,RW 公开加密用户数据或锁定系统,要求付费恢复。这些出于经济动机的攻击不分青红皂白地针对医疗保健、执法和关键基础设施等行业,旨在快速破坏和高影响力的勒索。臭名昭著的 WannaCry 爆发利用了 EternalBlue 漏洞,感染了全球超过 200,000 个系统[1].RW 代码的简单性与盈利能力相结合,推动了其快速扩散和日益复杂。对抗 RW 的努力涵盖了广泛的防御策略。

2025-08-05 00:09:41 974

原创 威胁情报与分析平台原理、过程流程图、架构拓扑图

本文对比分析了四大威胁情报平台的技术原理与应用:AlienVault OTX采用社区协同模式实现威胁数据共享;VirusTotal通过70+引擎协同检测提升准确率;IBM X-Force Exchange整合AI模型进行高级威胁狩猎;安全威胁情报中心(TIP)构建企业级闭环防御体系。文章详细解析了各平台的核心原理、处理流程和系统架构,并通过金融APT防御、移动木马追踪等案例展示实际应用效果。最后指出未来威胁情报技术将向自适应安全演进,建议企业根据场景需求选择合适平台。

2025-08-05 00:09:29 1217

原创 人工智能算法总结-1

2025-08-04 00:16:01 538

原创 人工智能算法总结-2

!人工智能算法体系庞大且持续进化,以下从。

2025-08-04 00:15:36 822

原创 网络安全能力滑动标尺模型原理和架构及案例

核心价值模型解决了安全投入的优先级悖论——左侧能力(架构/被动防御)性价比最高,占整体效能70%以上610,是高级能力生效的前提。行业痛点与对策碎片化工具链:亚太区57%企业计划增加预算,但多工具集成困难 → 转向平台化方案(如SIEM整合)37。AI落地滞后:仅13.6%企业有效应用AI于安全 → 需结合威胁情报训练专项模型37。合规缺口:NIST使用率最低 → 分行业定制框架(如金融业融合PCI DSS)7。未来演进智能驱动:AI替代人工分析(如自动生成ATT&CK映射策略)3。生态协同。

2025-08-04 00:15:14 930

2402.05917v2.pdf

2402.05917v2

2025-07-21

2312.01381v1.pdf

2312.01381v1

2025-07-21

2311.16926v5.pdf

2311.16926v5

2025-07-21

2312.03502v2.pdf

2312.03502v2

2025-07-21

2311.15537v2.pdf

2311.15537v2

2025-07-21

2401.03707v2.pdf

2401.03707v2

2025-07-21

2403.15019v1.pdf

2403.15019v1

2025-07-21

2401.16741v2.pdf

2401.16741v2

2025-07-21

2401.13627v2.pdf

2401.13627v2

2025-07-21

2401.00027v2.pdf

2401.00027v2

2025-07-21

2401.15261v2.pdf

2401.15261v2

2025-07-21

【5G网络与边缘计算】基于SRv6的多接入边缘应用访问方案:优化数据路径与资源管理

内容概要:本文探讨了在5G网络中使用Segment Routing over IPv6(SRv6)访问边缘计算应用的方法。随着多接入边缘计算(MEC)在5G及未来网络中的兴起,优化数据路径并确保资源按政策使用变得至关重要。文章首先回顾了现有的边缘资源访问解决方案及其局限性,随后提出将SRv6集成到5G架构中以解决这些问题。SRv6不仅与现有5G控制平面兼容,还允许运营商对绑定和服务访问进行控制,支持用户移动性和运行时更新,并具备良好的可扩展性。此外,文中还介绍了基于UERANSIM和free5GC的测试平台,展示了UE如何根据连接的5G切片访问不同的应用实例。 适合人群:从事5G网络、边缘计算及相关领域的研究人员和技术人员,尤其是对网络架构和协议设计感兴趣的读者。 使用场景及目标:①理解当前边缘计算应用访问方案的局限性;②掌握SRv6在5G网络中的应用方式及其优势;③探索如何利用SRv6实现高效、灵活的边缘应用访问机制。 其他说明:本文提出的SRv6解决方案旨在满足五个关键需求:与5G控制平面兼容、运营商可控、支持用户移动性、支持运行时更新以及具有良好的可扩展性。实验部分通过构建测试平台验证了该方案的可行性,未来工作将聚焦于动态配置SR网关和支持5G切换流程。

2025-07-20

EFormer:增强型Transformer用于前景语义与轮廓特征的人像抠图研究及其实现

卷积神经网络(CNN)难以捕捉远距离依赖性和复杂的全局信息,Vision Transformer虽然在低频成分提取上表现出色,但对于高频信息的处理存在明显不足。为解决此问题,论文创新地使用了跨分辨率交叉注意力模块,并建立了语义轮廓检测器(SCD),以及分别设计了边缘提取分支(CEEB)和语义抽取分支(SEB),确保同时优化两个层面的内容表示能力。实验结果显示EFormer显著提升了对复杂背景条件下的人脸边界及细节点位的精确度,相比以往模型实现了性能超越。此外,EFormer不需要预设参数即可达到良好的适应性和稳定性。 适合人群:计算机视觉、机器学习领域的研究人员,特别是从事图像分割、深度估计等相关工作的专业人士。 使用场景及目标:① 适用于需要高精度分离主体对象与背景区别的应用场景,如影视特效制作、社交媒体平台的内容编辑工具、智能相册应用等领域;② 提升模型对高频细节(比如头发丝边缘)的捕捉精度和鲁棒性;③ 推动未来研究方向的发展,在此基础上可以进一步探索更多种类的任务处理方式。

2025-02-13

视频实例分割的创新方法-无监督VideoCutLER算法的研究与应用

内容概要:本文介绍了名为VideoCutLER的创新无监督多实例视频分割算法。研究指出,现有的无监督视频实例分割通常依靠光学流估计进行运动估计,在面对遮挡、光照变化等情况时性能不佳。为解决这一问题,作者提出了一种简单的基于剪辑合成与训练(cut-synthesis-and-leearn)的管道模型。这个流程包括三个关键步骤:首先,利用MaskCut从未标注图像中生成多个对象伪掩膜;其次,使用ImageCut2Video将一批未标记图片转换成带有关联轨迹的合成视频;最后用伪轨迹对一个无监督的视频分割模型进行训练。该模型仅依赖无标签图片即可学习并执行视频实例分割任务,实现了比现有最优解更好的效果。实验结果显示了其卓越的表现以及强大的泛化能力。 适合人群:从事计算机视觉及相关领域的研究人员和技术从业者,特别是在深度学习应用于视频分析方面有一定经验的基础研究人员或高级技术人员。

2025-02-13

室内环境无监督3D实例分割方法UnScene3D的技术实现与应用

内容概要:本文介绍了名为UnScene3D的新方法,用于解决无需人工标注即可对复杂室内的3D点云数据进行对象实例分割的问题。作者提出了基于伪掩膜生成与自训练迭代的方法,有效利用自我监督颜色和几何特征生成稀疏的初始伪实例掩膜,并通过模型自训练逐步提高精度和密实度,最终实现在无手动注释下高效而准确地识别3D物体并给出完整的实例分割。实验表明,该算法相比已有的无监督和弱监督3D分割方法有着更高的精确率。 适用人群:计算机视觉领域研究者和从业者、自动驾驶以及机器人导航研究人员。 使用场景及目标:主要针对RGB-D相机采集的真实世界三维点云计算设备,适用于需要从复杂且凌乱的场景中提取特定个体的任务,如机器人视觉系统构建。该工具的目标是从未标记的数据集中识别独立的对象实例并且为其绘制边界框。 其他说明:UnScene3D采用了一种新颖的基于几何先验和多模态特征的伪遮罩生成技术和一种有效的自监督框架来进行密集预测。

2025-01-22

视频对象分割领域的引导槽注意力机制及其应用

内容概要:论文提出了一种新型的引导槽注意力(Guided Slot Attention, GSA)网络用于无监督视频对象分割任务,旨在复杂背景下更好地分离前景与背景并提高特征提取能力。具体而言,模型引入了引导槽、特征聚合转换器(Feature Aggregation Transformer,FAT)以及K近邻过滤算法,利用局部和全局特征进行迭代调整,最终生成更精准的分割掩模。此外,在DAVIS-16和FBMS两个知名数据集上进行了大量实验,证明了提出的GSA网络优于现有方法并在多物体视频中表现稳健。 适合人群:计算机视觉、机器学习的研究人员和技术爱好者,对视频对象分割感兴趣的开发者。 使用场景及目标:适用于各种需要高质量无监督视频对象分割的应用场合,如自动驾驶系统中的障碍物检测、医疗影像分析等领域;主要目的是改进复杂场景下前景背景的有效区分,增强识别精度。 其他说明:研究团队来自延世大学,相关代码已经开源发布于GitHub平台上。该研究得到韩国政府信息技术规划评估研究所(IITP)的资金支持,并被收录进多个顶级国际会议和期刊中。

2025-01-22

无监督视频对象分割领域的跨模态与帧间注意力机制研究及其应用

内容概要:本文提出了一种新的无监督视频对象分割(unsupervised VOS)方法——双原型注意力机制(Dual Prototype Attention),即IMA(跨模态注意模块)和IFA(帧间注意模块)。这些机制分别解决了现有多模态融合和时间聚集方法中存在的鲁棒性和计算效率等问题,显著提高了在多个公开基准数据集上的表现。此外,论文还探讨了原型嵌入对性能的影响并对其进行了验证。 适合人群:对视频处理特别是无监督视频对象分割领域感兴趣的计算机视觉研究员和技术开发者。 使用场景及目标:适用于各种需要进行高质量自动图像或视频内容分析的应用环境,如智能监控、增强现实、自动驾驶等领域。具体的目标是提高模型识别最突出物体时的精度以及稳定性,即使遇到遮挡或者复杂背景也能有效运作。 阅读建议:本篇文献提供了详尽的技术细节和支持性实验结果来展示所提出的DPA方法优越之处。因此,在理解和评估该研究成果的基础上可以深入了解如何利用注意力机制提升深度学习模型的效果,尤其是对于涉及时间和空间维度的数据处理任务非常有价值。

2025-01-22

深度混合专家语言模型DeepSeek-V3的技术报告:高效推理与经济训练实现

内容概要:本文介绍了大型混合专家(MoE)语言模型DeepSeek-V3的技术报告。DeepSeek-V3拥有总计671亿参数,在每个令牌激活约37亿参数,采用Multi-head Latent Attention (MLA)架构和DeepSeekMoE架构确保高效的推理和成本效益的训练。为优化推理和成本有效训练,DeepSeek-V3还引入了无辅助损失策略用于负载均衡以及多令牌预测训练目标,旨在增强性能。同时文中讨论了预训练、后训练阶段,及其硬件部署策略,并展示了全面评估表明DeepSeek-V3相较于其他开源模型表现更为优秀且与顶级闭源模型媲美。 适用人群:具备一定深度学习和自然语言处理基础知识的研发人员和技术爱好者。 使用场景及目标:①探讨最新的深度学习优化技术和大规模语言模型的设计;②理解高效率的语言模型训练框架及其经济性;③学习先进模型在不同任务基准测试上的实际应用表现。 其他说明:该研究致力于推动开源模型在性能和实用性方面的边界拓展,并为研究人员提供了新的研究方向和发展路径。尽管其性能出色,但其部署规模较大可能对小型团队带来负担。未来的改进将依赖于更先进的硬件发展来进一步提升速度并降低成本。此外,文章强调该系列持续关注开放源码长远发展模式,逐步接近人工通用智能(AGI)这一最终目标。

2025-01-18

基于等变变换改善图像重建的插件与即用(Plug-and-Play)算法稳定性研究

内容概要:本文主要探讨了将等变属性引入插件与即用(Plug-and-Play,PnP)算法,特别是应用于图像重建中的效果提升方法。具体来说,在解决逆向成像问题时,通过随机应用变换及其逆操作于图像降噪器输入输出的方式对降噪器施加约束。该方法不仅可以减少由隐含先验模型所导致的算法不稳定性及次优解情况,而且能显著提高重建质量与稳定性。同时,文章从理论角度分析并解释了这一现象产生的原因,指出通过这种机制能够更好地保持隐含图像先验的一致性和鲁棒性,并进行了大量实验来验证这一点的有效性。 适用人群:从事机器视觉和深度学习方向的研究人员以及开发者们。这些人通常需要构建高质量和高效的算法用于解决如医学成像、遥感影像处理等各种实际场景。 使用场景及目标:①改进现有插件与即用框架的稳定性和效率,确保各种情况下都能获得良好性能;②增强基于不同模态(例如CT扫描、MRI等)数据的应用系统的泛化能力;③推动相关领域的学术研究和技术进步,促进更多创新成果出现。 其他说明:尽管该研究所提出的方法在很大程度上优化了算法的表现,但在某些特定配置下依然可能出现分歧或幻影伪迹。因此,在实践中仍需谨慎评估选择是否采用这种方法论并进行充分测试验证。此外,本项目得到了多项资助支持,并利用IDRIS提供的高性能计算资源完成部分计算任务。

2025-01-18

残差去噪扩散模型(RDDM):图像生成与修复任务中的双扩散框架及其应用

内容概要:本文提出了一种名为残差去噪扩散模型(RDDM)的新方法。这一框架将传统的单向去噪扩散过程解耦为残差扩散和噪声扩散两个部分,从而扩展了原始的基于去噪的扩散模型到统一并具解释性的模型上,能够同时应用于图像生成与修复任务。通过在实验中引入残差表示目标图到退化输入之间的有方向转换,明确指导逆向生成用于图像恢复,而噪声则侧重随机扰动增加变化度。文中探讨了多种采样方式,并证明其一致性以及优于现有去噪模型的表现能力。 适合人群:从事图像处理的研究员和技术人员,对深度学习中的生成对抗网络、自编码器、变分推理等领域有一定背景的知识工作者。 使用场景及目标:适用于需要高质量图像生成或修复的应用场合,如去除阴影、低光照增强、消雨、图像插值等。RDDM提供了解决这些任务的有效工具,能够在保持高视觉效果的同时减少计算复杂性和提高训练效率。 其他说明:作者提供了开源代码和预训练好的模型来促进进一步探索与发展该创新性框架(网址见论文)。此外,研究发现不同的采样步骤会影响最终生成的质量,并提出了一些优化系数安排的方法。对于未见过的任务,则建议通过自动选择最佳抽样机制来达到理想的效果。

2025-01-18

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper.pdf

Zhang_Spike-guided_Motion_Deblurring_with_Unknown_Modal_Spatiotemporal_Alignment_CVPR_2024_paper

2025-07-21

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper.pdf

Chiu_Brush2Prompt_Contextual_Prompt_Generator_for_Object_Inpainting_CVPR_2024_paper

2025-07-21

2403.19225v1.pdf

2403.19225v1

2025-07-21

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper.pdf

Hu_Training_Vision_Transformers_for_Semi-Supervised_Semantic_Segmentation_CVPR_2024_paper

2025-07-21

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper.pdf

Yu_Shadow-Enlightened_Image_Outpainting_CVPR_2024_paper

2025-07-21

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper.pdf

Xiao_HomoFormer_Homogenized_Transformer_for_Image_Shadow_Removal_CVPR_2024_paper

2025-07-21

2403.01482v4.pdf

2403.01482v4

2025-07-21

2404.06542v1.pdf

2404.06542v1

2025-07-21

2403.10362v2.pdf

2403.10362v2

2025-07-21

2403.07700v1.pdf

2403.07700v1

2025-07-21

2403.07630v1.pdf

2403.07630v1

2025-07-21

2404.04231v1.pdf

2404.04231v1

2025-07-21

2403.01818v1.pdf

2403.01818v1

2025-07-21

2404.04050v1.pdf

2404.04050v1

2025-07-21

2403.18342v1.pdf

2403.18342v1

2025-07-21

2404.01518v1.pdf

2404.01518v1

2025-07-21

2403.18186v1.pdf

2403.18186v1

2025-07-21

2403.16370v1.pdf

2403.16370v1

2025-07-21

2404.00130v1.pdf

2404.00130v1

2025-07-21

2404.00252v2.pdf

2404.00252v2

2025-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除