无人机垂直起降机场位置规划的最大覆盖模型及推荐系统

大家读完觉得有帮助记得关注和点赞!!!

抽象

随着全球城市空中交通(UAM)基础设施发展的加速,深圳等城市正在规划大规模垂直起降机场网络(例如,到2026年将建立1,200+个设施)。由于数据粒度和现实世界适用性的历史限制,现有的规划框架仍然不足以应对这种复杂性。本文通过首先提出容量动态最大覆盖位置问题(CDMCLP)来解决这些差距,这是一种新的优化框架,可以同时对城市尺度的时空需求、异构用户行为和基础设施容量约束进行建模。在此基础上,我们引入了将 CDMCLP 与社会经济因素和动态聚类初始化相结合的综合规划建议系统。该系统利用基于经验用户行为的自适应参数调整来生成实用的规划解决方案。在中国中心城市进行验证,证明了新的优化框架和推荐系统的有效性。在CDMCLP的评估和优化下,传统定位方法的定量性能得到体现,可提高38%–52%,而推荐系统则表现出用户友好性和复杂元素的有效整合。通过将数学严谨性与实际实施考虑相结合,这种混合方法弥合了理论位置建模和现实世界 UAM 基础设施规划之间的差距,为市政当局提供了垂直起降机场网络设计的实用工具。

无人机垂直起降机场、最大覆盖问题、运行优化、推荐系统

 

1.介绍

交通需求的快速增长加上日益复杂的交通场景给地面交通系统带来了前所未有的挑战(雅尼斯和查齐里斯,2022).在城市核心地区,交通拥堵和高昂的管理成本已成为可持续发展的持续障碍,而农村地区,特别是丘陵地区,尽管土地资源丰富,但基础设施受到限制,这主要是由于经济可行性的担忧。这种空间不对称的交通困境不仅推动了自动驾驶和高铁等技术的不断创新,还催化了通过城市空中交通(UAM)向三维空域利用的革命性概念转变。当前的技术轨迹表明,UAM 不仅仅是地面交通的补充解决方案,它还具有城市空间范式的变革潜力。在物流应用中,无人机已经显示出相对于传统人工配送系统的显着优势,深圳的无人机配送试点项目显示短途货运效率提高了 60% 以上。对于城市通勤,电动垂直起降 (eVTOL) 车辆提供有效绕过地面拥堵的三维路线解决方案。根据波士顿咨询集团的预测,这项技术可以在未来十年内将核心城市通勤时间减少 40%。更深刻的是,这种“去地球化”的交通模式可能会从根本上重塑传统的城市管理框架,就像军用无人机彻底改变战场作战一样(克伦克霍恩,2025;周,2025).无人机独立于基础设施的移动特性正在创造全新的城市空间组织原则。

这一转型的核心是无人机垂直起降机场基础设施网络,它提供关键的运营支持,包括飞机起飞/降落、能量补充和设备存储。这些设施是基础节点,通过共享资源分配实现多行业低空飞行活动。在垂直起降机场发展考虑因素中,选址规划成为确保安全、高效和可持续的低空经济增长的关键因素。这需要对运营效率、经济可行性和环境可持续性参数进行全面优化。然而,虽然大量研究集中在垂直起降机场建筑设计上(约翰斯顿等人,2020),关于UAM垂直起降机场位置规划的实证研究仍然很少,而且主要是理论研究。这种研究差距主要源于 UAM 的起步状态和有关需求模式的历史数据缺陷。直到最近,全球还没有一个城市建设了大规模的无人机垂直起降机场网络,这在实际实施模式中造成了真空。然而,这种情况正在发生根本性的变化。例如,深圳市政府制定了到 2026 年建设 1,200 多个无人机垂直起降机场的雄心勃勃的目标(研究,2024).这一战略举措不仅强调了紧迫的实际需求,而且为学术研究提供了重要的现实基础。因此,开发平衡运营效率、经济可行性和环境兼容性的区位模型已成为低空经济发展的关键研究挑战。

为了应对这些挑战,本文提出了一个将理论创新与实践部署相结合的三层框架。 我们的解决方案分为三个阶段。首先,引入容量动态最大覆盖定位问题(CDMCLP)来评估无人机垂直起降机场网络性能;通过对容量约束下的需求溢出效应进行建模,该方法量化了城市空中交通网络的服务覆盖范围和运营效率。其次,我们开发了一个可扩展的优化框架,将初始化启发式方法与定制算法相结合。通过战略性网络初始化和模型驱动优化,我们的方法有效地生成高性能垂直起降机场配置。该方法在大规模场景中表现出稳健性,如深圳的案例研究所示,该案例研究要求从 140,000 个候选位置中选择 2,000 个垂直起降机场,我们简化而有效的运营优化策略保持了计算的可处理性。第三,我们通过社会技术整合方法提高实际适用性。我们的无人机垂直起降机场推荐系统综合了三个维度:(1)模型生成的性能指标,(2)社会经济因素(人口密度、土地价值)和(3)现有基础设施数据。这种混合框架为规划者提供了数据驱动的建议,同时保留了人类的决策权。综上所述,本文的贡献如下:

  • 制定大规模垂直起降机场规划作为CDMCLP进行,同时评估服务覆盖范围和运营效率。
  • 开发一个可扩展的优化框架,将初始化启发式方法与高效作优化相结合。
  • 创建一个社会技术推荐系统,将技术绩效指标与社会经济考虑相结合。

 

2.相关工作

2.1.无人机垂直起降机场位置规划

目前关于无人机垂直起降机场规划的研究主要分为两类:基于需求的聚类方法和数学规划方法。基于需求的聚类方法主导了早期的 UAM 垂直起降机场规划研究。开创性工作应用 K-means 聚类来优化首尔的垂直起降机场位置(林和黄,2019), 北加州(塔拉夫达尔等人,2019)和南佛罗里达州(魏等人,2020),重点是最大限度地减少用户和垂直起降机场之间的旅行距离。随后出现了更复杂的技术:Rajendran 等人。(拉金德兰和扎克,2019)引入了基于多式联运的热启动(MTWS)策略进行聚类初始化,而Amitanand和Sinha(阿米塔南德·辛哈和拉金德兰,2023)在纽约市案例研究中采用了 CLARA 算法。这些方法在计算效率方面表现出色,但本质上假设没有容量限制的静态需求模式。数学规划方法通过形式化优化模型解决了这些限制。王等人。(Kai 等人,2022)开发了一个多层次的框架,将战略部署、战术行动和需求动态与全球融合保证相结合。威利等人。(威利和萨蒙,2021)结合了 eVTOL 技术参数以最大限度地减少平均旅行时间,而 Yu 等人。(江等人,2025)通过考虑按需移动性 (ODM) 和定期穿梭车 (RS) 需求的三维标准优化网络设计。最近,Yu 等人。(Yu 等人,2023)建立了空地交通一体化模型,以减少城市拥堵。然而,这些复杂的公式在大规模实施中往往面临可扩展性挑战。

尽管无人机垂直起降机场规划的方法存在多样性,但现有研究面临三个关键局限性。首先,由于大多数作品优化了仅数十个垂直起降机场的网络(例如,(林和黄,2019;塔拉夫达尔等人,2019)),这与深圳等特大城市以 2,000 个垂直起降机场为目标的实际需求形成鲜明对比。其次,由于过度强调中距离商用eVTOL应用,需求错位持续存在,偏离了当前优先考虑短程、高频作的UAM发展轨迹。第三,数据缺陷困扰着大多数模型,因为缺乏现实世界的需求模式迫使人们依赖简单化或不切实际的假设。虽然深度学习在相关领域显示出前景,例如 Raczcyki 等人的(Raczycki 和 Szymański,2021)使用 OpenStreetMap 数据进行自行车共享站规划的迁移学习方法,或 Wang 等人的(Wang等人,2020)基于CNN的ESLE地理空间嵌入模型,由于UAM数据稀缺,这些方法在垂直起降机场规划中仍未得到充分探索。这些差距共同凸显了迫切需要一个框架来解决容量限制下的可扩展优化、动态需求建模和大规模城市环境中的实际部署考虑——这些都是我们所提出方法的核心目标。

2.2.最大覆盖位置问题 (MCLP)

最大覆盖位置问题 (MCLP) 因其直观的表述、可计算性以及捕获设施和动态需求模式之间复杂相互作用的能力而成为城市空中交通 (UAM) 基础设施建模的基础框架。最初由 Church 和 ReVelle 提出(丘奇和雷维尔,1974)为了通过固定的设施数量最大限度地覆盖客户,尽管 MCLP 具有 NP 硬性复杂性,但它已成为位置优化的基石(哈特马尼斯,1982).经典启发式方法包括贪婪启发式(唐斯和卡姆,1996)、拉格朗日松弛(加尔旺和雷维尔,1996)、模拟退火(默里和丘奇,1996)和禁忌搜索(阿登索-迪亚斯和罗德里格斯,1997),而元启发式算法就像遗传算法一样(Jaramillo 等人,2002;Fazel Zarandi 等人,2011)以及最近的图卷积网络(张等人,2024)展示正在进行的方法论演变。

MCLP 的适应性催生了许多解决特定领域限制的变体:预算限制(Khuller 等人,1999)、广义覆盖(科恩和卡齐尔,2008)、共线设施要求(巴塔查里亚和南迪,2013)、部分覆盖(佩克尔和卡拉,2015)和模糊电容配方(Atta 等人,2022).基于这些进步,我们推出了电容动态 MCLP (CDMCLP) 来应对 UAM 的独特挑战。我们的模型通过结合随时间变化的需求模式、垂直起降机场的容量限制和时空覆盖动态来扩展经典的 MCLP,这些特征在以前的变体中不存在,但对于现实的城市部署至关重要。这种适应弥合了现有文献中的关键空白,实现了高密度垂直起降机场网络的可扩展优化,同时保持了计算可行性。

3.方法论

3.1.问题表述

所提出的 CDMCLP 在离散化时空网格框架上运行(图 1),通过 PyTorch 和 NumPy 等库实现基于矩阵的高效计算。时间和空间由整数索引表示:t∈{0,1,…,T−1}用于时间分辨率,以及我,j∈{0,1,…,M−1}×{0,1,…,N−1}用于空间分辨率。区域表示为一个我,j,形成一个网格M×N空间单位。

图 1.网格示例:左侧面板显示带有散点的笛卡尔坐标系,而右侧面板显示相应的热图。

 

图 2.算法框架G:热图说明了供需匹配的顺序转换。

需求: 我们框架中的需求点同时具有空间和时间属性。为了捕捉这种动态,我们将需求分布表示为三维张量D∈ℤ≥0T×M×N哪里Dt,我,j量化区域内的需求点数量一个我,j在时间间隔t.该公式明确地模拟了 UAM 需求模式的时间变化。

供应:相比之下,供应能力被视为与设施位置相关的静态资源。我们定义供应能力矩阵S∈ℤ≥0M×N跟S我,j表示区域内的总服务容量一个我,j如下:

哪里V我,j代表区域内设施数目一个我,j和p是站点每单位时间可以提供的供应能力。

可行性限制:为确保设施布局的物理可实现性,S必须满足三个约束:

  1. 总供应限制:

     

    哪里c是设施的总数限制。该约束表示供应能力的总上限。

  2. 容量粒度:

    这保证了任何地区的供应能力只能是p.

  3. 非消极性:

    这表明任何地区的供应能力值都不能为负。

为了对供需之间的复杂相互作用进行建模,我们引入了动态匹配算法G(如图2所示)。与传统的二进制覆盖模型不同,传统的二进制覆盖模型假设静态且不受限制的服务可用性,G 通过三个连续阶段明确模拟用户在现实容量约束下寻求服务的行为。

第一阶段是本地清仓,即同一区域内的需求和供应一个我,j是匹配的。这确保用户在寻求替代方案之前优先利用附近的资源。剩余需求(R​Dt)和剩余供应(R​St) 计算如下:

在第二阶段,进行需求再分配。剩余需求R​Dt“溢出”到无人机垂直起降机场服务半径 r 内的邻近区域(反映作范围限制的超参数)。这些溢出的需求在仍保留剩余供应的区域寻求服务R​St. 这会产生溢出的需求(O​Dt),然后与R​St:

最后,第三阶段进行反向映射,追踪最终剩余需求F​R​Dt返回其原始区域。虽然此步骤不会改变F​R​Dt,它保留了未满足需求的空间背景,确保后续优化过程(例如设施重新定位)保持地理保真度。

综上所述,算法的输入由需求张量组成D和供应矩阵S,带输出F​R​Dt和F​R​St捕获每个时间步长未满足的需求和未使用的容量。该关系正式表示为:

通过对时空动态、容量限制和用户行为进行显式建模,该公式可以对大规模 UAM 网络进行可扩展的优化,同时保持与实际部署场景的实际相关性。

3.2.优化

我们的优化目标被定义为在所有时间间隔和空间区域内最小化未满足的总需求:

该算法通过三个核心机制运行,利用F​R​D和F​R​S:

  • • 

    需求驱动的供应增加:F​R​D在时间维度上相加,以汇总一段时间内未满足的需求。然后应用一个充满 的卷积核来在空间上平滑需求分布。选择表现出最高平滑值的区域以接收额外的供应能力 p。直观上,这对应于在供需失衡最严重和最持续的地区建立新的无人机垂直起降机场。

  • • 

    未充分利用地区的供应减少:F​R​S随着时间的推移,也会类似地相加,以确定长期未充分利用容量的区域。剩余供应值最高的位置,其容量减少p,有效地停用服务可用性持续超过需求的区域中的无人机垂直起降机场。此步骤可防止资源浪费并将容量重新分配给更关键的区域。

  • • 

    稳定的禁忌列表: 为避免振荡调整,确保收敛,实施了禁忌清单机制。任何进行背靠背修改的区域(例如,无人机垂直起降机场被删除,然后又添加新,反之亦然)都会被添加到禁忌列表中,暂时禁止对其容量进行进一步的优化作。这种启发式限制模仿禁忌搜索策略,防止冗余或破坏稳定的更新,同时保持计算简单性。

这个迭代过程将贪婪启发式(优先考虑高需求区域)与类似禁忌的内存结构相结合,尽管其实现仍然故意轻量级。尽管它很简单,但该算法严格满足所有约束条件(2)-(4),并在大规模实验中证明了经验有效性。其计算效率需要最少的矩阵运算,使其成为实际部署的实用基线,特别是在由于动态需求模式或作限制而需要快速重新优化的场景中。

3.3.无人机垂直起降机场位置推荐系统

图 3.推荐系统框架:输入层(左)、评分层(中)、综合层(右)、反馈循环。

无人机垂直起降机场位置推荐系统在获得优化结果后确定无人机垂直起降机场位置。该系统由三个层次结构层和反馈机制组成,如图3所示:

  • 输入层:该层聚合了异构数据源,例如实时需求模式、地理约束和社会经济因素,为后续分析阶段奠定基础。
  • 评分层:输入数据通过该层中的并行计算图进行处理,生成多个M×N评分矩阵。每个矩阵都编码特定于区域的分数,表明在不同的规划策略下是否适合无人机垂直起降机场放置。
  • 综合层:所有评分矩阵都使用受逻辑回归启发的自定义机器学习 (ML) 模型集成到此处。该模型执行加权求和,然后执行 sigmoid 激活以生成全面的评分矩阵。虽然其前向传递类似于逻辑回归,但其参数是用户初始化的,并根据交互日志迭代细化。

系统向用户推荐多样化的高分区域,用户保留最终决策权。用户选择被反馈到输入层并用于更新合成层参数,从而随着时间的推移实现自适应学习。目前,该系统包含四种互补策略:

  • 需求满足最大化:该策略使用提出的 CDMCLP 求和F​R​D跨时间并通过卷积核在空间上平滑它,优先考虑持续供应不足的区域。为了最大限度地减少用户交互期间的延迟,输入需求矩阵被预处理为静态1×M×N矩阵通过网格化高性能无人机垂直起降机场网络,类似于知识蒸馏。
  • 覆盖面积最大化:这种方法根据未覆盖的邻近区域的数量对区域进行评分,分数越高,通过填补现有垂直起降机场网络中的空白来最大化服务覆盖范围的位置相对应。
  • 空地连接时间最小化:该策略使用以下公式量化无人机垂直起降机场(集合 A)和地铁站(集合 B)之间旅行时间的减少:
  • 哪里T一个,b是从 Vertiport 出发的直达旅行时间一个到车站b.分数反映了在每个地区增加垂直起降机场、激励靠近交通枢纽所带来的边际连通性改善。

  • • 

    建筑成本最小化:该方法结合了障碍物密度、人口密度和住房租金价格的归一化指标(图 4)。这些因素被线性汇总并重新调整以产生综合成本得分,优先考虑发展壁垒较低的地区。

这种多战略框架平衡了相互竞争的目标,包括服务效率、可访问性和成本效益,同时保留了人工监督。它确保与城市规划工作流程的实际相关性。

图 4.建筑成本计算管道:将归一化输入(左)相加并重新缩放以生成综合得分图(右)。

\描述

4.实验与结果

4.1.学习区域

中国中心城市的一个地区,占地约 388 平方公里,居住约 410 万居民,是本研究的主要研究区域。如图 5 的卫星地图所示,该地区表现出明显的空间异质性,其特点是人口密度和土地利用模式形成鲜明对比。西南部建成区与繁华的中心区直接相连,人口密度高达每平方公里 30,000 人,反映了密集的城市活动和对先进交通基础设施的需求。相比之下,毗邻较小城市的东北部地区人口密度明显较低,约为每平方公里 2,000 人,这表明郊区扩张和交通需求减少。此外,北部湖泊和南部山区——著名的风景名胜——由于旅游业和地面基础设施的可达性有限,季节性需求激增。这种超密集城市核心、过渡郊区和自然屏障的结合使该地区成为在复杂的现实条件下评估大规模无人机垂直起降机场网络的代表性案例研究。

图 5.带有红色边框的研究区域的卫星图像。

\描述
 

带有红色边框的研究区域的卫星图像。

作为中国先进UAM试点计划的一部分,研究区提供了丰富且可访问的无人机飞行轨迹数据和城市背景信息。我们获取了 2024 年 11 月(恰逢旅游旺季)的无人机飞行记录,并从飞行起点和终点提取出发地-目的地 (OD) 对,以代表时空解决的移动需求。这些 OD 对被网格化为T×M×N需求张量D,如第 3 节所述,空间聚合结果如图 6 所示。该数据集捕捉了景区附近的日常通勤模式和娱乐需求激增,为评估垂直起降机场网络性能提供了现实的基础。

图6.时空需求分布网格化D∈ℤT×M×N:研究区域无人机飞行始发地-目的地对的 3D 可视化。

\描述

可见,无人机需求的空间分布呈现出显著的异质性(图6),这一模式与中国中心城市低空经济发展的起步阶段一致。为了提高规划的准确性,本研究明确地将时间动态纳入需求分析中。而不是聚合整个观察期(T),我们提取每个空间单位(一个我,j).由此产生的可视化(图 7)揭示了与图 6 中的静态空间分布的明显偏差,特别是在旅游景点和通勤中心附近存在瞬时需求高峰的地区。这种对比强调了时空分辨率的重要性:仅根据时间平均需求优化垂直起降机场网络可能会在容量需求高度依赖于时间的地区错误分配基础设施。

图7.峰值需求强度分布:研究区域单位时间内最大无人机使用频率

\描述
 

显示网格区域的 3D 地图,其中包含表示研究区域中峰值需求强度(每小时最大飞行次数)的颜色编码和高度缩放块。

4.2.基于CDMCLP的优化结果

根据研究区人口密度和中国低空经济发展规划,初步需求为400架无人机垂直起降机场。为了生成基线配置,我们应用了k-均值聚类 (k=400)到无人机飞行始发地-目的地对,使用空间坐标作为特征。在以 200 米分辨率网格化后,生成的集群中心形成了初始规划图(图 8),可视化为代表潜在垂直起降机场位置的半透明色块。

图8.初始无人机垂直机场配置k-均值聚类 (k=400)

\描述
 

平面地图将 400 个集群无人机垂直起降机场位置可视化为半透明色块。

优化模型(第 3 节)配置为空间分辨率 200