题意:根据样例可直接看出
Sample Input
AAAAAAAAAABABABCCD
NEERCYESYESYESNEERCYESYESYES
Sample Output
9(A)3(AB)CCD
2(NEERC3(YES))
思路:影响决策的因素是子串,因此一个状态应该能完整的保存一个子串,这就需要一个区间和一个string保存子串的位置和内容,这里我用了string dp【105】【105】来保存状态,状态转移类似于UVA 1626括号序列(经典的区间DP),当当前的串能压缩时先将其压缩,然后枚举切割位置,寻找切割后两个子问题之和的最小值。
这题的坑点在于判断一个串能否压缩,判断方法是枚举压缩长度,可以整除时用一个循环判断元素相等(循环具体内容参考我flod函数里的循环),总体来说有点难
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
using namespace std;
string s, dp[150][150];//dp【i】【j】表示区间【i,j】长度最小的字符串
bool flod(const string &ss, int &len, int &cnt) {//判断一个串能否折叠,如果能的话获得最小循环节长度以及循环次数(引用的作用)
bool ok = false;
int nn = ss.size();
for (len = 1; len <= nn / 2; len++) {
if (nn % len == 0) {
bool flag = true;
for (int i = 0; i + len < nn; i++) {
if (ss[i] != ss[i + len]) { flag = false; break; }
}
if (flag) { cnt = nn / len; ok = true; break; }
}
}
return ok;
}
int dfs(int L, int R) {
if (dp[L][R].size()) return dp[L][R].size();
if (L == R) { dp[L][R] = s[L]; return 1; }
string ss;
for (int i = L; i <= R; i++) {
ss.push_back(s[i]);
}
dp[L][R] = ss;
int len = 0, cnt = 0;//循环节长度以及循环次数
if (flod(ss, len, cnt)) {
int temp = cnt; string num;
while (temp) {
num.push_back(temp % 10 + '0');
temp /= 10;
}
reverse(num.begin(), num.end());//忘记反转WA了一次
if (num.size() + 2 + dfs(L, L + len - 1) < dp[L][R].size()) {
dp[L][R] = num + "(" + dp[L][L + len - 1] + ")";
}
}
for (int k = L; k < R; k++) {
if (dfs(L, k) + dfs(k + 1, R) < dp[L][R].size()) {
dp[L][R] = dp[L][k] + dp[k + 1][R];
}
}
return dp[L][R].size();
}
int main() {
while (cin >> s) {
int n = s.size();
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
dp[i][j].clear();
}
}
dfs(0, n - 1);
cout << dp[0][n - 1] << endl;
}
return 0;
}