- 博客(233)
- 资源 (18)
- 收藏
- 关注
原创 Expert Parallelism(EP):混合专家模型的分布式计算新范式
什么是EP(Expert Parallelism,简称EP),EP的作用优势,EP的原理
2025-09-10 14:16:29
461
原创 解决麒麟桌面系统时间不同步问题
systemd-timesyncd时间同步错误解决方案 系统显示"Timed out waiting for reply from x.x.x.x:123"错误,表明时间同步服务无法连接NTP服务器。主要解决方法包括: 检查服务状态:使用systemctl status systemd-timesyncd查看状态,必要时重启服务 更换NTP服务器:在/etc/systemd/timesyncd.conf中配置更可靠的服务器,如0.cn.pool.ntp.org 网络检查:确保UDP 12
2025-08-13 14:00:43
100
原创 用系统架构思维,告别“意大利面条式”系统提示词
**摘要:**文章探讨了当前“神级提示词”设计存在的三大困境:规则冲突、维护困难、核心价值稀释,并提出以“系统架构思维”重构提示词设计。通过四层架构模型(核心定义、交互接口、内部处理、全局约束)和六大编译原则(如模块化封装、示例驱动等),将提示词从杂乱规则清单升级为可预测、可维护的系统化设计。案例对比显示,结构化方法显著提升了AI行为的稳定性和扩展性,标志着提示词工程从经验主义转向系统化设计的范式升级。核心观点指出:强大的AI智能体依赖于优质结构而非堆砌规则。
2025-07-29 16:18:21
338
原创 NL2SQL和ChatBI利用CTE解决复杂SQL生成的可行性分析与实践
摘要: ChatBI系统通过整合公共表表达式(CTE)技术,显著提升复杂SQL查询的生成效率和可读性。CTE能将复杂查询分层拆解,避免重复计算,增强SQL可维护性。ChatBI-CTE架构包含意图识别、元数据解析、CTE生成和权限控制模块,通过自然语言解析和分层CTE转换,解决Schema Linking、多表关联等难题。实践案例显示,CTE能清晰分解多维度查询(如区域销量分析),并支持动态权限注入。但该技术对数据量敏感,需权衡CTE与临时表的使用场景,未来可结合向量化优化进一步提升性能。
2025-07-29 13:12:45
176
原创 nl2sql的解药pipe syntax
更重要的是,随着大模型技术的成熟和语义层的完善,NL2SQL+管道语法将从"可选组件"演变为"核心中枢",成为企业数据智能的基础设施。管道语法(Pipe Syntax)的出现,为NL2SQL技术提供了一剂强效解药,它不仅简化了SQL查询的编写过程,更通过线性化的操作流程显著提升了NL2SQL生成的SQL语句的可读性、可维护性和执行效率。管道语法作为NL2SQL的"解药",通过其线性化的操作表达、清晰的流程映射和高效的执行优化,显著提升了自然语言到SQL转换的准确性和效率。随着技术的不断演进,
2025-07-09 18:41:10
809
1
转载 使用大语言模型发现企业年报中试图掩盖的坏消息
公司将负面信息安排在管理层讨论与分析(MD&A)部分的后段,而非报告前部,降低负面信息的关注度。
2024-12-31 23:20:27
208
2
原创 LLM 推理的核心指标
LLM 推理的核心指标:TTFT 首 Token 延迟、TPOT 每个Token延迟、Latency延迟、Throughput:吞吐量
2024-08-12 18:25:13
5057
原创 解决:ImportError: cannot import name xxx most likely due to a circular import
most likely due to a circular import这个错误提示表明你的代码中存在循环导入(circular import)的问题。
2024-06-29 13:59:25
753
原创 根据save_steps,epoch,batch_size,训练集数据量,判断会有多少个checkpoint
如何计算会有多少个checkpoint
2024-06-24 20:32:27
339
翻译 cudaErrorNoKernelImageForDevice: no kernel image is available for execution on the device
no kernel image is available for execution on the device
2024-04-19 20:30:00
873
1
翻译 简述语言理解任务基准:superGLUE
SuperGLUE一种评估通用语言理解系统的新基准。SuperGLUE 通过识别一组新的具有挑战性的 NLU任务来更新 GLUE 基准,这些任务通过人类和机器基线之间的差异来衡量。
2024-04-18 09:00:00
1619
翻译 微软说:NL2SQL是一个远未解决的问题!
近期微软专家探讨了企业级NL2SQL领域的关键问题和挑战:企业中复杂数据库模式、语言歧义、语义不匹配和缺乏切近企业实际场景的评估基准等。
2024-04-07 17:00:22
1078
翻译 使用大型语言模型改进文本嵌入Improving Text Embeddings with Large Language Models
一种用decoder做embeding的方法
2024-03-12 19:26:18
572
原创 Redis作者antirez谈LLM和编程(好文)
0、与大型语言模型(LLM)协作,学会让其为简单问题提供答案,这样可以更高效地利用时间。 1、正确地向LLM提问是一项基本技能。 2、在与他人交流时,提高描述问题的能力同样重要,因为不仅LLM,有时其他人也可能不明白我们的意图。 3、沟通障碍是很大的限制,尽管许多程序员在其专业领域表现出色,但在沟通方面却存在欠缺。 4、搜索引擎可能会被LLM替代,因此在寻求信息时,首先应咨询LLM,但同样需要有辨别能力。 5、哲学观点:相信亲眼所见似乎是一个明智的方法。 6、启示:
2024-02-22 18:04:07
239
原创 一个不容忽视的警告WARNING:pip install --upgrade pip
pip提示升级时,尽量升级。pip升级的好处:1、安装速度加快,寻找依赖包的速度更快。2、解决部分包安装失败,安装不上,不兼容的问题。
2024-01-05 14:55:52
1786
原创 wsl发行版删除、安装和docker镜像压缩
通过本文可以了解:1学会wsl卸载ubuntu虚拟机。2学会使用wsl安装指定发型版本的虚拟机。3、手动压缩docker desktop的本地存储vhdx大文件。
2023-12-10 15:21:23
2470
原创 SOTA和baseline的区别+benchmark的含义
sota=目前该领域表现最好的算法benckmark=用于对比的各种技术指标;baseline=对比算法。论文motivation=论文所提方法的具体表现,达到了什么效果;
2023-10-23 16:31:21
1427
原创 如何使用自有数据微调ChatGLM-6B
ChatGLM-6B微调落地方案。如何使用自有数据集微调chatglm-6b完成自己的任务。软提示微调的目标,去自动学习一些参数/向量,来模拟人工提示工程;即让模型在嵌入式空间自己学习一个提示向量,加到原来的输入之前,再去激活大模型的“潜力”。
2023-07-18 19:29:45
1688
2
办公文档+wingdings2+wps打钩
2023-04-06
广东省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
云南省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
河北省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
上海市 最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
山西省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
浙江省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-03-06
北京市最新五级行政区划json文件 2021年 国家统计局权威数据
2021-01-25
广西壮族自治区最新五级行政区划json文件 2021年 国家统计局权威数据
2021-03-10
用java开发打印机界面_java窗口界面 课程设计
2021-01-12
江苏省最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
内蒙古自治区 最新五级行政区划json文件 2021年 国家统计局权威数据
2021-05-12
Python-3.6.11rc1.tar
2020-08-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人