机器学习笔记——决策树

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的决策树算法。

在这里插入图片描述


决策树(Decision Tree)概述

决策树是一种基于树形结构的机器学习算法,广泛应用于分类和回归任务中。它通过一系列的规则将数据集划分为不同的子集,从而进行分类或预测。决策树算法直观、易于解释,并且能够处理复杂的特征交互。

基本概念

  • 节点(Node)
    • 根节点(Root Node):树的起始节点,表示整个数据集
    • 内部节点(Internal Node):表示数据集的划分条件,包含特征和阈值
    • 叶节点(Leaf Node):表示分类或回归的最终结果,包含类别标签或连续值
    <
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值