大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的决策树算法。
决策树(Decision Tree)概述
决策树是一种基于树形结构的机器学习算法,广泛应用于分类和回归任务中。它通过一系列的规则将数据集划分为不同的子集,从而进行分类或预测。决策树算法直观、易于解释,并且能够处理复杂的特征交互。
基本概念
- 节点(Node):
- 根节点(Root Node):树的起始节点,表示整个数据集。
- 内部节点(Internal Node):表示数据集的划分条件,包含特征和阈值。
- 叶节点(Leaf Node):表示分类或回归的最终结果,包含类别标签或连续值。