朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法
对于给定的训练数据集,首先基于特征条件独立假设学习输入 / 输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y
朴素贝叶斯法实现简单,学习和预测的效率都很高,是一种常用的方法
朴素贝叶斯法实际上学习到生成数据的机制,所以属于生成模型
一.贝叶斯定理
贝叶斯思维:先验概率 → 调整因子 → 后验概率
朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法
对于给定的训练数据集,首先基于特征条件独立假设学习输入 / 输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y
朴素贝叶斯法实现简单,学习和预测的效率都很高,是一种常用的方法
朴素贝叶斯法实际上学习到生成数据的机制,所以属于生成模型
贝叶斯思维:先验概率 → 调整因子 → 后验概率