统计学习方法 | 朴素贝叶斯

朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法

对于给定的训练数据集,首先基于特征条件独立假设学习输入 / 输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y

朴素贝叶斯法实现简单,学习和预测的效率都很高,是一种常用的方法

朴素贝叶斯法实际上学习到生成数据的机制,所以属于生成模型

一.贝叶斯定理

贝叶斯思维:先验概率 → 调整因子 → 后验概率

1.条件概率

2.贝叶斯定理

3.朴素贝叶斯

二. 基本方法

1.“朴素” ?

2.后验概率最大化 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值