- 博客(14)
- 收藏
- 关注
原创 T6 好莱坞明星识别
损失函数选择本文使用,适用于多分类的 One-hot 编码标签,配合 softmax 激活函数能有效地处理多分类任务。与此相对的则适用于整数标签。我们对比了两种方法的适用场景,选择适合 One-hot 编码的,保证模型的训练效率。动态学习率策略使用了指数衰减动态调整学习率,使模型在初期快速收敛,并在训练后期稳定优化。学习率衰减的设置考虑了衰减步数和衰减率,能在确保稳定的同时,逐步降低学习率,提升了模型的最终效果。过拟合控制通过和,有效防止模型过拟合,并确保保存表现最优的模型参数。
2024-11-02 04:44:21
327
原创 T5 运动鞋品牌识别
● monitor: 被监测的数据。● min_delta: 在被监测的数据中被认为是提升的最小变化, 例如,小于 min_delta 的绝对变化会被认为没有提升。使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中 ● tf.keras.preprocessing.image_dataset_from_directory():是 TensorFlow 的 Keras 模块中的一个函数,用于从目录中创建一个图像数据集(dataset)。
2024-10-24 07:35:19
791
原创 T3 天气识别
本文将采用CNN实现多云、下雨、晴、日出四种天气状态的识别。较上篇文章,本文为了增加模型的泛化能力,新增了Dropout层并且将最大池化层调整成了平均池化层。
2024-09-27 21:59:37
537
原创 10 - L8 机器学习 | 支持向量机 SVM
支持向量机通过最大化类间的间隔来进行分类。它通过核函数能很好地处理线性不可分问题,是一种非常强大、灵活的分类算法。尽管SVM计算复杂度较高,但在许多实际应用中,它的表现往往非常出色。在实际操作中,选择合适的核函数是一个关键步骤,通常需要通过交叉验证等方法来确定最优的核函数类型及相应的参数。一旦选定核函数,非线性SVM的学习算法(如SMO算法)会在这个“kernelized”特征空间中寻找最大边距超平面,从而解决了原始空间中非线性可分的问题。
2024-09-20 22:49:42
1214
1
原创 10 - L8 机器学习 | K-means聚类算法
聚类就是将一个庞杂数据集中具有相似特征的数据自动归类到一起,称为一个簇,簇内的对象越相似,聚类的效果越好。“相似”这一概念,是利用距离标准来衡量的,我们通过计算对象与对象之间的距离远近来判断它们是否属于同一类别,即是否是同一个簇。聚类是一种的方法,不需要预先标注好训练集。聚类与分类最大的区别就是分类的目标事先已知,对于一个动物集来说,你并不清楚这个数据集内部有多少种类的动物,你能做的只是利用聚类方法将它自动按照特征分为多类,然后人为给出这个聚类结果的定义(即簇识别)。
2024-09-06 22:53:00
1282
原创 T2 - 彩色图片分类
模型结构:增加了卷积层的深度和卷积核的数量,并在全连接层前添加了 Dropout 层来防止过拟合。数据处理:对数据进行了归一化处理,并提供了将彩色图片转换为灰度图片的选项,以便你进行对比实验。训练与评估:通过模型训练过程,记录每个 epoch 的训练集和验证集上的准确率,并在训练完成后使用测试集进行模型的最终评估。
2024-08-30 21:41:43
972
原创 9 - L7/L8:机器学习|随机森林 | 糖尿病探索与预测案例
针对 weather_classification_data 数据的分析和预测,我们进行了以下几个关键步骤,并得出了一些有价值的结论:● 数据可视化:我们通过多种图表(如直方图、箱线图、饼图等)对温度、湿度、风速、降水量、云量、大气压、紫外线指数、季节、能见度、地点和天气类型等特征进行了可视化分析。这些图表帮助我们直观地理解了每个特征的分布情况以及可能的异常值。● 类别特征编码:对于数据中的类别特征(如云量、季节、地点、天气类型),我们使用了 LabelEncoder 对其进行了编码。
2024-08-15 16:06:19
1079
原创 7 - L5_2 决策树模型 | 回归模型
代码目标:我们希望通过鸢尾花数据,训练一个决策树模型,之后应用该模型,可以根据花萼长度、花萼宽度、花瓣长度 预测 花瓣宽度。
2024-08-06 22:25:29
248
原创 6 - L5_1 决策树模型 | 分类模型
决策树算法是一种在机器学习和数据挖掘领域广泛应用的强大工具,它模拟人类决策过程,通过对数据集进行逐步的分析和判定,最终生成一颗树状结构,每个节点代表一个决策或一个特征。决策树的核心思想是通过一系列问题将数据集划分成不同的类别或值,从而实现对未知数据的预测和分类。这一算法的开发灵感源自人类在解决问题时的思考方式,我们往往通过一系列简单而直观的问题逐步缩小解决方案的范围。决策树的构建过程也是类似的,它通过对数据的特征进行提问,选择最能区分不同类别的特征,逐渐生成树状结构,最终形成一个可用于预测的模型。
2024-07-31 15:18:52
887
原创 5 - L4 机器学习|K-邻近算法模型(KNN)
Accuracy:模型在测试集上的准确率为0.796,即模型正确分类了79.6%的样本。第一个类有60个样本被正确分类,没有样本被错误分类为第二类,但有28个样本被错误分类为第三类。第二个类有77个样本被正确分类,没有样本被错误分类为第一类,但有2个样本被错误分类为第三类。第三个类有62个样本被正确分类,有14个样本被错误分类为第一类,但有7个样本被错误分类为第三类。分类报告包括了每个类别的精度(precision)、召回率(recall)、F1 分数(f1-score)和支持度(support)
2024-07-25 15:38:24
777
原创 4 - L3 机器学习 | 逻辑回归
二分类问题 在二分类问题中,目标变量只有两个可能的取值,通常记作0和1。逻辑回归的任务是根据输入的特征,预测目标变量为1的概率。逻辑函数(Logistic Function) 逻辑回归使用逻辑函数(或称Sigmoid函数)将线性回归模型的输出转换为一个(0, 1)区间内的概率值。逻辑函数的公式为:其中,𝑧 是线性回归模型的输出,即特征的线性组合:。
2024-07-19 11:37:38
969
原创 2 - L2_1 机器学习 | 简单线性回归模型
在本周的任务中,学习了简单线性回归模型,并应用该模型对鸢尾花数据集进行了预测实践。具体任务包括以下几个步骤:学习线性回归模型的基本概念:了解了什么是回归、线性以及线性回归。回归的目的是通过已知变量预测未知变量,而线性回归通过两个或多个变量之间的线性关系来进行预测。
2024-06-26 10:04:46
284
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人