[CDQ分治与整体二分]个人对CDQ分治与整体二分的理解

在线/离线:首要考虑

在线算法: 可以以序列化的方式一个一个的处理输入,不必事先知道所有输入数据
离线算法: 必须事先知道所有的输入数据
(例如选择排序就是一个离线算法,而插入排序则不是)

众所周知,现在遍地毒瘤高级数据结构题(以及在一些算法之中需要用高级数据结构来加速的题),各种树(套树)*,代码量->INF,调试难度->INF,烦躁程度->INF,所幸在一些问题中我们可以利用分治的思想来解决之,最具有代表性的就是CDQ分治以及整体二分
如果题目强制要求在线的话(比如操作参数依赖于之前答案),只能乖乖地码数据结构了(不过似乎有一种二进制分组的做法能化一些在线问题为离线),而如果题目没有要求(或者你设计的算法不需要)在线的话,离线算法常常成为我们首要考虑的对象,CDQ分治和整体二分就是离线算法条件下可以运用的有力武器

CDQ分治

查询的限制——序

对于一个数据结构题而言(或者需要运用数据结构的地方),我们无非就是做两件操作,一是修改,二是查询
对于修改而言,有插入删除变更(其实等价于删除再插入)这几种方式
那么查询的本质是什么呢
我们思考所遇到过的数据结构题,可以发现查询实际上就在做一件事情:
符合本次查询的限制的修改对答案产生的效果合并起来
满足这种限制通常表现为一种的要求,并且这种序是广义的,符合限制的操作往往是按某种序(或多种序)排序后的操作的前缀
通常来说,查询一定有时间上的限制,也就是要求考虑发生在某个时刻之前的所有查询,对于一个问题而言,假如所有查询要求的发生时刻相同,那这就是一个静态查询问题,如果要求发生的时刻随着查询而变,那这就是一个动态修改问题,动态修改问题较静态查询而言复杂很多,往往需要高级数据结构,可持久化等手段,而静态查询简单很多,例如时间倒流,twopointers之类的方法都是很好的选择

动态修改->静态查询

CDQ分治算法的核心就在于:去掉时间的限制,将所有查询要求发生的时刻同化,化动态修改为静态查询
(其实对于有些问题来说可以把某一维的限制通过排序看作时间限制然后运用CDQ分治)
我们记过程DivideConquer(l,r)[l,r]
此时我们引入分治思想,将操作序列划分为[l,mid],[mid+1,r]两个区间
这两个区间内部的修改对区间内部的查询的影响是完全相同的子问题,我们递归处理
处理完之后剩下来只要考虑[l,mid][mid+1,r]
这时我们发现这其实已经变成了一个静态查询问题,因为所有的查询都发生在修改之后,我们只需要考虑静态查询的问题如何处理即可

时间复杂度分析

假设我们处理前面部分的修改对后面部分的复杂度为O(f(n))
CDQ分治的复杂度就为O(f(n)logn)
也就是说CDQ分治用一个log的代价完成了动态到静态
在处理静态查询的时候,我们往往需要对操作进行重新排序,如果直接做最后会多一个log,这时候我们有两种手段,一是在CDQ分治开始之前就先将这一维有序化,通过从左往右扫分两边来保证时刻操作序列都这一维有序,另一种方法时每次分治都得到一个有序表,通过合并两边的有序表来得到新的有序表

整体二分

二分答案——整体二分的前身

首先对于一类查询而言,我们要找的答案满足二分性,例如区间第k大(统计权值然后二分答案),这时候我们就可以采用二分答案的方法来解决,二分答案是把计算问题转化为判定问题的有效手段
二分答案的做法是不断维护一个可能的答案区间[l,r],每次二分,我们先求出当前的判定答案mid=(l+r)/2,然后我们统计在当前标准下会对查询产生贡献的修改(例如参数mid)的贡献和,我们再比较现在的贡献和与我们想要的贡献和的大小,如果贡献和已经超过我们想要的贡献和了,说明符合标准的修改太多了,我们需要紧缩标准(将答案区间变为l,mid),否则我们需要放宽标准(将答案区间变为mid+1,r),

所有操作的二分——从单个到整体

对于单个查询而言,我们可以采用预处理+二分答案的方法解决,但往往我们要回答的是一系列的查询,对于每个查询而言我们都要重新预处理然后二分,时间复杂度无法承受,但是我们仍然希望通过二分答案的思想来解决,整体二分就是基于这样一种想法——我们将所有操作(包括修改和查询)一起二分,进行分治
整体二分具体的做法比较难理解,我先把伪代码给出来

Divide_Conquer(Q, AL, AR)
//Q是当前处理的操作序列
//WANT是要求的贡献,CURRENT为已经累计的贡献(记录的是1~AL-1内所有修改的贡献)
//[AL, AR]是询问的答案范围区间
if AL = AR then
    将Q中所有是询问操作的答案设为AL
end if
//我们二分答案,AM为当前的判定答案
AM = (AL+AR) / 2
//Solve是主处理函数,只考虑参数满足判定标准[AL, AM]的修改的贡献,因为CURRENT域中已经记录了[1,AL-1]的修改的贡献了,这一步是保证时间复杂度的关键,因为SOLVE只于当前Q的长度有关,而不与整个操作序列的长度有线性关系,这保证了主定理解出来只多一个log
Solve(Q, AL, AM)
//Solve之后Q中各个参数满足判定标准的修改对询问的贡献被存储在ANS数组
//Q1,Q2为了两个临时数组,用于划分操作序列
for i = 1 to Length(Q) do
    if (Q[i].WANT <= Q[i].CURRENT + ANS[i]) then
        //当前已有贡献不小于要求贡献,说明最终答案应当不大于判定答案
        向数组Q1末尾添加Q[i]
    else
        //当前已有贡献小于要求贡献,说明最终答案应当大于判定答案
        //这里是整体二分的关键,把当前贡献累计入总贡献,以后不再重复统计!
        Q[i].CURRENT = Q[i].CURRENT + ANS[i]
        向数组Q2末尾添加Q[i]
    end if
end for
//分治,递归处理
Divide_Conquer(Q1, AL, AM)
Divide_Conquer(Q2, AM+1, AR)

我们时刻维护一个操作序列和对应的可能答案区间[AL,AR]
我们先求得一个判定答案AM=(AL+AR)/2
然后我们考虑操作序列的修改操作,将其中符合标准(例如参数<=AM)的修改对各个询问的贡献统计出来

然后我们对操作序列进行划分
第一类操作是查询
如果当前查询累计贡献比要求贡献大,说明AM过大,满足标准的修改过多,我们需要给这中查询设置更小的答案区间来紧缩标准,于是将它划分到答案区间[AL,AM](这种情况我们不改变查询的CURRENT域,保证了继续下一次分治时这些查询的CURRENT域还是累计的[1,AL1]的修改的贡献)
否则我们将当前已经统计到的贡献更新,将它划分到答案区间[AM+1,AR](这种情况下我们将[AL,AM]内的修改的贡献更新了CURRENT域,保证了下次继续分治时这些查询的CURRENT域已经保留的是[1,AM]的贡献了)
第二类操作是修改
假如它符合当前的标准,已经被统计入了贡献,那么它对于答案区间是[AM+1,AR]的查询来说已经没有意义了(因为我们知道它一定会对这些查询产生贡献,并且我们已经累计了这种贡献到CURRENT域中),我们就把它划分到[AL,AM]的区间里,
对于不符合当前的标准,未被统计入贡献的修改来说,如果我们放宽标准,它仍然可能起贡献,然而我们并未统计这种贡献,因此对于[AM+1,AR]的区间来说它仍具有考虑的意义,我们把它划分到[AM+1,AR]

划分好了操作序列之后就继续分治递归下去就可以了
至此整体二分结束

时间复杂度分析

和CDQ分治一样,整体二分的代价也是O(f(n)logn)

<think>首先,用户的问题是关于CDQ分治算法的基本原理及其应用场景。我需要根据系统级指令来构建我的回答。 系统级指令关键点: - 所有行内数学表达式必须使用$...$格式。 - 独立公式必须使用$$...$$格式并单独成段。 - LaTeX语法正确。 - 使用中文回答。 - 生成相关问题。 - 回答中引用的段落末尾自然地添加引用标识。 - 回答结构清晰,帮助用户逐步解决问题,保证真实可靠。 参考站内引用: - 引用[1]:关于分治思想的描述,包括分块、递归等。 - 引用[2]:关于书籍的引用,不相关。 - 引用[3]:关于下载资源的链接,不相关。 用户真正的需求是理解CDQ分治的概念和原理,所以我需要专注于CDQ分治CDQ分治的基本原理: - CDQ分治是由陈丹琦(Chen Danqi)提出的一种算法,用于处理偏序问题,如三维偏序问题。 - 它是分治思想的一种应用,特别适合解决离线查询问题。 - 核心思想:将问题分成子问题,递归解决,然后合并结果,处理跨越子问题的部分。 应用场景: - 三维偏序问题:例如,给定点集,统计每个点满足某些条件的点数。 - 动态规划优化:如斜率优化等。 - 其他离线查询问题。 我的回答结构: 1. **介绍CDQ分治**:简要说明其背景和目的。 2. **基本原理**:解释算法步骤,使用数学表达式描述。 3. **应用场景**:列出常见应用。 4. **生成相关问题**:在最后添加相关问题。 5. **添加引用**:在引用段落末尾自然添加引用标识。 数学表达式: - 行内数学:如变量、点坐标等,使用$...$。 - 独立公式:如方程,使用$$...$$。 例如: - 行内:点$P_i = (a_i, b_i, c_i)$ - 独立:偏序关系公式。 生成相关问题: - 基于CDQ分治,如"CDQ分治如何优化三维偏序问题?"或"CDQ分治的时间复杂度分析?" 确保回答真实可靠: - 基于算法知识,CDQ分治常用于OI竞赛中处理偏序问题。 引用处理: - 参考引用[1]是关于分治思想的,我可以引用它来支持分治部分。 - 其他引用不相关,但系统说"请尽可能多的参考用户上一次的问题和你的回答",但用户没有上一次问题,所以基于当前引用。 最终回答大纲: - 开头:介绍CDQ分治。 - 原理部分:分步骤解释,使用LaTeX。 - 应用场景:列举例子。 - 相关问题:在最后添加。 - 结尾:自然结束。</think>### CDQ分治算法的基本原理及其应用场景 CDQ分治(Chen Danqi Divide and Conquer)是由中国计算机科学家陈丹琦提出的一种分治算法变体,主要用于处理离线查询问题,特别是多维偏序问题(如三维偏序)。它在算法竞赛和数据处理中应用广泛,能高效解决一些复杂问题。下面我将逐步解释其基本原理和应用场景,确保内容清晰可靠。 #### 1. CDQ分治的基本原理 CDQ分治基于经典分治思想,但针对偏序问题进行了优化。核心思路是将问题递归分解为子问题,处理子问题内部和子问题之间的影响,最后合并结果。算法主要分为三个步骤:分、治、合。以下是详细解释: - **分(Divide)**:将输入数据(如点集)按某一维度(通常是时间或索引)分成两个大致相等的子集,记为左子集$L$和右子集$R$。例如,给定点集$P = \{P_1, P_2, \dots, P_n\}$,其中每个点$P_i = (a_i, b_i, c_i)$表示三维坐标,我们按第一维$a_i$排序并分割: $$ \text{mid} = \left\lfloor \frac{n}{2} \right\rfloor $$ 这样得到$L = \{P_i \mid i \leq \text{mid}\}$和$R = \{P_i \mid i > \text{mid}\}$。递归地对$L$和$R$应用相同过程。 - **治(Conquer)**:递归处理左子集$L$和右子集$R$,解决子问题内部的偏序关系。例如,在三维偏序问题中,目标是统计每个点$P_i$满足$a_j \leq a_i, b_j \leq b_i, c_j \leq c_i$的点数$j$($j \neq i$)。递归调用确保子集内部的问题被解决。 - **合(Merge)**:合并子问题结果,并处理跨越子集$L$和$R$的影响。这是CDQ分治的关键: - 使用辅助数据结构(如树状数组或线段树)高效处理跨子集贡献。 - 例如,在三维偏序中,合并时需统计$L$中的点对$R$中点的贡献。具体做法: 1. 对$L$和$R$按第二维$b_i$排序。 2. 遍历$R$中的每个点$P_j$,同时维护一个树状数组,用于记录第三维$c_i$的累积值。 3. 对于$P_j$,查询树状数组中满足$c_k \leq c_j$的点数($k$来自$L$),并累加到结果。 这确保了跨子集贡献在$O(n \log n)$时间内完成。 整个算法的时间复杂度为$O(n \log^2 n)$,其中$n$是数据规模。递归公式可表示为: $$ T(n) = 2T\left(\frac{n}{2}\right) + O(n \log n) $$ 其中$O(n \log n)$来自合并步骤的排序和树状数组操作。CDQ分治通过“分而治之”高效处理了偏序关系[^1]。 #### 2. CDQ分治的应用场景 CDQ分治特别适合离线查询问题,其中数据点固定,查询可批量处理。常见应用包括: - **三维偏序问题**:如统计逆序对或点对关系。例如,在竞赛中,给定点集统计每个点“支配”的点数(即所有维度都小于等于该点的点)。CDQ分治能高效解决,时间复杂度优于暴力$O(n^2)$。 - **动态规划优化**:用于优化序列问题,如最长上升子序列(LIS)或斜率优化问题。通过分治处理状态转移,减少计算量。 - **离线查询处理**:在数据库或算法中,处理批量查询,如区间统计或范围查询。CDQ分治将查询排序后递归处理,避免实时开销。 - **其他领域**:在计算几何(如最近点对问题)和机器学习数据预处理中也有应用,但需结合具体算法调整。 CDQ分治的优势在于其通用性和效率,但要求问题具有“可分治性”,即子问题独立且合并步骤可高效实现。实际应用中,常结合树状数组等数据结构提升性能。 #### 相关问题 1. CDQ分治如何处理更高维度的偏序问题(如四维偏序)? 2. CDQ分治普通分治算法的主要区别是什么? 3. CDQ分治在动态规划优化中的具体实现案例? [^1]: 分治思想的核心是递归分解问题,然后合并结果,这在CDQ分治中得到充分体现,如分割点集并递归处理子问题。 [^2]: 算法理论常参考经典书籍,但CDQ分治更常见于竞赛和算法论文。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值