day1-快速排序

边界情况分析

快排属于分治算法,最怕的就是 n分成0和n,或 n分成n和0,这会造成无限划分

分析一
以j为划分时,x不能选q[r]

若以i为划分,则x不能选q[l]

假设 x = q[r]

关键句子quick_sort(q, l, j), quick_sort(q, j + 1, r);

由于j的最小值是l,所以q[j+1..r]不会造成无限划分

但q[l..j](即quick_sort(q, l, j))却可能造成无限划分,因为j可能取到r
举例来说,若x选为q[r],数组中q[l..r-1] < x,

那么这一轮循环结束时i = r, j = r,显然会造成无限划分

代码如下:

#include <iostream>
using namespace std;
int n;
int q[100010];

void quick_sort(int l, int r, int q[]){
	if(l>=r) return;
	int i = l - 1, j = r + 1, x = q[l + r >> 1];
	while(i<j){
		while(q[++i]<x);
		while(q[--j]>x);
		
		if(i<j){
			swap(q[i], q[j]);
		}
		quick_sort(l, j, q);
		quick_sort(j+1, r, q);
	}
}
int main(){
	cin>>n;
	for(int i = 0;i<n;i++){
		cin>>q[i];
	}
	quick_sort(0, n-1, q);
	for(int i = 0;i<n;i++){
		cout<<q[i]<<" ";
	}
	
	return 0;
}

以i为划分:

// 从小到大
void quick_sort(int q[], int l, int r)
{
    if(l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r + 1 >> 1];//注意是向上取整,因为向下取整可能使得x取到q[l]
    while(i < j)
    {
        do i++; while(q[i] < x);
        do j--; while(q[j] > x);
        if(i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, i - 1), quick_sort(q, i, r);
}

// 从大到小(只改两个判断符号)
void quick_sort(int q[], int l, int r)
{
    if(l >= r) return;

    int i = l - 1, j = r + 1, x = q[l + r >> 1];
    while(i < j)
    {
        do i++; while(q[i] > x); // 这里和下面
        do j--; while(q[j] < x); // 这行的判断条件改一下
        if(i < j) swap(q[i], q[j]);
    }
    quick_sort(q, l, j), quick_sort(q, j + 1, r);
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值