边界情况分析
快排属于分治算法,最怕的就是 n分成0和n,或 n分成n和0,这会造成无限划分
分析一
以j为划分时,x不能选q[r]
若以i为划分,则x不能选q[l]
假设 x = q[r]
关键句子quick_sort(q, l, j), quick_sort(q, j + 1, r);
由于j的最小值是l,所以q[j+1..r]不会造成无限划分
但q[l..j](即quick_sort(q, l, j))却可能造成无限划分,因为j可能取到r
举例来说,若x选为q[r],数组中q[l..r-1] < x,
那么这一轮循环结束时i = r, j = r,显然会造成无限划分
代码如下:
#include <iostream>
using namespace std;
int n;
int q[100010];
void quick_sort(int l, int r, int q[]){
if(l>=r) return;
int i = l - 1, j = r + 1, x = q[l + r >> 1];
while(i<j){
while(q[++i]<x);
while(q[--j]>x);
if(i<j){
swap(q[i], q[j]);
}
quick_sort(l, j, q);
quick_sort(j+1, r, q);
}
}
int main(){
cin>>n;
for(int i = 0;i<n;i++){
cin>>q[i];
}
quick_sort(0, n-1, q);
for(int i = 0;i<n;i++){
cout<<q[i]<<" ";
}
return 0;
}
以i为划分:
// 从小到大
void quick_sort(int q[], int l, int r)
{
if(l >= r) return;
int i = l - 1, j = r + 1, x = q[l + r + 1 >> 1];//注意是向上取整,因为向下取整可能使得x取到q[l]
while(i < j)
{
do i++; while(q[i] < x);
do j--; while(q[j] > x);
if(i < j) swap(q[i], q[j]);
}
quick_sort(q, l, i - 1), quick_sort(q, i, r);
}
// 从大到小(只改两个判断符号)
void quick_sort(int q[], int l, int r)
{
if(l >= r) return;
int i = l - 1, j = r + 1, x = q[l + r >> 1];
while(i < j)
{
do i++; while(q[i] > x); // 这里和下面
do j--; while(q[j] < x); // 这行的判断条件改一下
if(i < j) swap(q[i], q[j]);
}
quick_sort(q, l, j), quick_sort(q, j + 1, r);
}