贪心算法 | 最小生成树(Kurskal算法)

本文详细介绍了Kruskal算法,用于找到无向连通带权图的最小生成树。算法通过按边权重升序排列,依次尝试添加边,避免形成回路,直至连接所有顶点。内容包括算法设计、图解步骤、伪代码解释和可能的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、算法设计

什么是Kurskal算法?

假设 G = (V,E)是无向连通带权图,V = {1,2,……,n};设最小生成树 T = (V , TE),该树的初始状态为只有 n 个顶点而无边的非连通图 T = (V , { }),Kurskal算法将这 n 个顶点看成是 n 个独立的连通分支。

它首先将所有的边按权值从小到大排序,然后只要 T 中选中的边数不到 n-1 ,就做如下贪心选择:

在边集 E 中选取权值最小的边 (i , j),如果将边 (i , j)加入集合 TE 中不产生回路,就将该边加入边集 TE 中,即用边 (i , j) 将这两个连通分支合并连接成一个连通分支;否则继续选择下一条边。将边 (i , j) 从集合 E 中删去。继续上面的贪心选择,直到 T 中所有顶点都在同一个连通分支上为止。此时,选取到的 n-1 条边恰好构成 G 的一颗最小生成树 T 。

Kurskal算法的步骤:

步骤 1:初始化。将图中 G 的边集 E 中的所有边按权值从小到大排序,边集 TE = { },将每一个点都初始化为一个独立的分支,也就是每一个点对应一个集合。

步骤 2:在 E 中寻找权值最小的边 (i , j)。

步骤 3:若顶点 i 和 j 位于两个不同的连通分支,则将边 (i , j) 加入集合