【逆向思考】3352. 统计小于 N 的 K 可约简整数|2451

本文涉及知识点

逆向思考

3352. 统计小于 N 的 K 可约简整数

给你一个 二进制 字符串 s,它表示数字 n 的二进制形式。
同时,另给你一个整数 k。
如果整数 x 可以通过最多 k 次下述操作约简到 1 ,则将整数 x 称为 k-可约简 整数:
将 x 替换为其二进制表示中的置位数(即值为 1 的位)。
例如,数字 6 的二进制表示是 “110”。一次操作后,它变为 2(因为 “110” 中有两个置位)。再对 2(二进制为 “10”)进行操作后,它变为 1(因为 “10” 中有一个置位)。
返回小于 n 的正整数中有多少个是 k-可约简 整数。
由于答案可能很大,返回结果需要对 10 9 10^9 109 + 7 取余。
二进制中的置位是指二进制表示中值为 1 的位。
示例 1:
输入: s = “111”, k = 1
输出: 3
解释:
n = 7。小于 7 的 1-可约简整数有 1,2 和 4。
示例 2:
输入: s = “1000”, k = 2
输出: 6
解释:
n = 8。小于 8 的 2-可约简整数有 1,2,3,4,5 和 6。
示例 3:
输入: s = “1”, k = 3
输出: 0
解释:
小于 n = 1 的正整数不存在,因此答案为 0。
提示:
1 <= s.length <= 800
s 中没有前导零。
s 仅由字符 ‘0’ 和 ‘1’ 组成。
1 <= k <= 5

逆序思考

1逆序转换一次,可以是任意2的幂,特征是:二进制形式有且只有一个1。
0 ≤ x ≤ 800 0 \le x \le 800 0x800,如果通过之多k-1,能逆向转化为x,则:k次能转成 任意二进位刚好x个1的数。
如果不能通过之多k-1次逆序转化成x;则k次一定不能转化成二进制刚好x个1的数。
x小于s有特征一,一定存在i:
x[i] < s[i],且 x [ 0 ⋯ i − 1 ] = = x [ 0 ⋯ i − 1 ] x[0\cdots i-1]==x[0\cdots i-1] x[0i1]==x[0i1],余下的位相同。

实现

N=s.length
初始:pre[1]=true;
迭代k-1次,每次:
cur = pre;
通过i枚举0到N{
dp[i] |= dp[i中1的个数]。
}
第一层循环:通过i枚举0到N,表示二进制位1的数量为i,忽略dp[i]为假。
第二层循环:枚举特征一。
前面的1大于i,忽略;余下的空位小于1,忽略。

代码

核心代码

template<long long MOD = 1000000007,class T1 = int, class T2 = long long>
class C1097Int
{
public:
	C1097Int(T1 iData = 0) :m_iData(iData% MOD)
	{

	}
	C1097Int(T2 llData) :m_iData(llData% MOD) {

	}
	C1097Int  operator+(const C1097Int& o)const
	{
		return C1097Int(((T2)m_iData + o.m_iData) % MOD);
	}
	C1097Int& operator+=(const C1097Int& o)
	{
		m_iData = ((T2)m_iData + o.m_iData) % MOD;
		return *this;
	}
	C1097Int& operator-=(const C1097Int& o)
	{
		m_iData = ((T2)MOD + m_iData - o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator-(const C1097Int& o)const
	{
		return C1097Int(((T2)MOD + m_iData - o.m_iData) % MOD);
	}
	C1097Int  operator*(const C1097Int& o)const
	{
		return((T2)m_iData * o.m_iData) % MOD;
	}
	C1097Int& operator*=(const C1097Int& o)
	{
		m_iData = ((T2)m_iData * o.m_iData) % MOD;
		return *this;
	}
	C1097Int  operator/(const C1097Int& o)const
	{
		return *this * o.PowNegative1();
	}
	C1097Int& operator/=(const C1097Int& o)
	{
		*this *= o.PowNegative1();
		return *this;
	}
	bool operator==(const C1097Int& o)const
	{
		return m_iData == o.m_iData;
	}
	bool operator<(const C1097Int& o)const
	{
		return m_iData < o.m_iData;
	}
	C1097Int pow(T2 n)const
	{
		C1097Int iRet = (T1)1, iCur = *this;
		while (n)
		{
			if (n & 1)
			{
				iRet *= iCur;
			}
			iCur *= iCur;
			n >>= 1;
		}
		return iRet;
	}
	C1097Int PowNegative1()const
	{
		return pow(MOD - 2);
	}
	T1 ToInt()const
	{
		return ((T2)m_iData + MOD) % MOD;
	}
private:
	T1 m_iData = 0;;
};
class CBitCounts
{
public:
	CBitCounts(int iMaskCount)
	{
		m_vCnt.resize(iMaskCount);
		for (int i = 1; i < iMaskCount; i++)
		{
			m_vCnt[i] = 1 + m_vCnt[i & (i - 1)];
		}
	}
	template<class T>
	static int bitcount(T x) {
		int countx = 0;
		while (x) {
			countx++;
			x &= (x - 1);
		}
		return countx;
	}
	vector<int> m_vCnt;
};

template<class Result = C1097Int<> >
class CCombination
{
public:
	CCombination()
	{
		m_v.assign(1, vector<Result>(1,1));
	}
	Result Get(int sel, int total)
	{
		assert(sel <= total);
		while (m_v.size() <= total)
		{
			int iSize = m_v.size();
			m_v.emplace_back(iSize + 1, 1);
			for (int i = 1; i < iSize; i++)
			{
				m_v[iSize][i] = m_v[iSize - 1][i] + m_v[iSize - 1][i - 1];
			}
		}
		return m_v[total][sel];
	}
protected:
	vector<vector<Result>> m_v;
};
class Solution {
		public:
			int countKReducibleNumbers(string s, int K) {
				typedef C1097Int<> BI;
				const int N = s.length();
				vector<bool> pre(N+1);
				pre[1] = true;
				CBitCounts bc(N + 1);				
				for (int k = 1; k < K; k++) {
					auto cur = pre;
					for (int i = 0; i <= N; i++) {
						cur[i] = cur[i] || pre[bc.m_vCnt[i]];
					}
					pre.swap(cur);
				}
				BI ans = 0;
				CCombination com;
				for (int i = 0; i <= N; i++) {
					if (!pre[i]) { continue; }
					int preOne = 0;
					for (int j = 0; j < N; j++) {
						if ('0' == s[j]) { continue; }
						if (i < preOne) { break; }
						const int iReMain = i - preOne;
						const int has = N - j - 1;
						preOne++;
						if ( iReMain > has ) { continue; }
						ans += com.Get(iReMain, has);
					}
				}
				return ans.ToInt();
			}
		};

扩展阅读

我想对大家说的话
工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。
学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作
有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注
员工说:技术至上,老板不信;投资人的代表说:技术至上,老板会信。
闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛
失败+反思=成功 成功+反思=成功

视频课程

先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

03-26
### 逆向工程与反编译概述 逆向工程是一种通过对软件的目标代码进行分析,将其转化为更高级别的表示形式的过程。这一过程通常用于研究现有系统的内部结构、功能以及实现细节。在Java和Android领域,反编译工具被广泛应用于逆向工程中。 #### Java逆向工程中的Jad反编译工具 Jad是一款经典的Java反编译工具,能够将`.class`字节码文件转换为可读的`.java`源代码[^1]。虽然它可能无法完全恢复原始源代码,但它提供了足够的信息来帮助开发者理解已编译的Java程序逻辑。Jad支持多种反编译模式,并允许用户自定义规则以适应不同的需求。此外,其命令行接口和图形界面使得复杂代码的分析变得更加便捷。 #### Android逆向工程中的JEB反编译工具 针对Android应用的逆向工程,JEB是由PNF Software开发的一款专业级工具[^2]。相较于其他同类产品,JEB不仅具备强大的APK文件反编译能力,还能对Dalvik字节码执行高效而精准的操作。它的核心优势在于以下几个方面: - **广泛的平台兼容性**:除Android外,还支持ARM、MIPS等多种架构的二进制文件反汇编。 - **混淆代码解析**:内置模块能有效应对高度混淆的代码,提供分层重构机制以便于深入分析。 - **API集成支持**:允许通过编写Python或Java脚本来扩展功能并完成特定任务。 #### APK反编译流程及其意义 当涉及到具体的APK包时,可以通过一系列步骤提取其中的信息来进行全面的安全评估或者学习目的的研究工作[^3]。这些步骤一般包括但不限于获取资产目录(`assets`)内的资源数据;解密XML配置文档如`AndroidManifest.xml`定位应用程序启动点;最后利用上述提到的各种专用软件重现整个项目框架供进一步探讨。 ```bash # 使用apktool反编译APK示例 apktool d your_app.apk -o output_directory/ ``` 以上命令展示了如何借助开源工具ApkTool轻松拆卸目标安卓档案至易于探索的状态下。 ### 结论 无论是传统的桌面端还是现代移动端环境里头,恰当运用合适的反编译解决方案都是达成逆向工程项目成功不可或缺的一环。每种工具有各自专精之处,在实际应用场景当中应当依据具体需求做出明智的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

软件架构师何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值