- 博客(1232)
- 资源 (50)
- 收藏
- 关注
原创 C# n条水平平行线与m条垂直平行线相交的平行四边形的数量
摘要:文章探讨了计算n条水平平行线与m条垂直平行线相交时能形成的平行四边形数量问题。通过组合数学方法,指出形成平行四边形需要选择两条水平线和两条垂直线,数量分别为nC2和mC2的组合数乘积。给出了两种C#实现方案:第一种使用动态规划计算组合数(时间复杂度O(n²)),第二种直接应用数学公式n(n-1)m(m-1)/4(时间复杂度O(1))。示例显示当n=m=5时输出结果为100。两种方法都验证了该数学模型的正确性。
2025-07-07 09:29:14
780
原创 C++ n条水平平行线与m条垂直平行线相交的平行四边形的数量
【摘要】计算n条水平平行线与m条垂直平行线相交形成的平行四边形总数。通过组合数学,平行四边形由任意两条水平线和两条垂直线构成,其数量等于从n条线选2条的组合数乘以从m条线选2条的组合数,即nC2 × mC2。文中给出两种解法:1)动态规划计算组合数(O(n²)时间/空间),2)数学公式直接计算(n(n-1)/2)×(m(m-1)/2)(O(1)时间/空间)。例如,5×5线相交可形成100个平行四边形。文章包含C++实现代码及复杂度分析。
2025-07-07 09:00:41
410
原创 探索 Ubuntu 上 MongoDB 的安装过程
摘要:本文介绍了在Ubuntu系统上安装MongoDB数据库的详细步骤。MongoDB作为一款灵活的NoSQL文档数据库,具有无模式设计、高性能和易扩展等特点,适用于电子商务、CMS和实时分析等场景。文章对比了通过Ubuntu官方仓库和MongoDB官方源两种安装方式,并提供了验证服务状态的命令。安装过程包括更新系统、导入GPG密钥、添加软件源等关键步骤,最后给出了MongoDB的典型应用案例。通过本文指导,用户可以顺利完成MongoDB的安装配置,为开发项目构建高效的数据存储解决方案。
2025-07-05 15:09:31
1004
原创 在 Windows 上安装和运行 Apache Kafka
Apache Kafka是一款开源分布式消息系统,用于实时处理数据流。安装步骤包括:下载二进制文件、解压后配置zookeeper.properties和server.properties文件路径,并通过命令行启动Zookeeper和Kafka服务器。成功运行后即可进行数据传输。详细教程可参考官网kafka.apache.org。
2025-07-05 14:54:29
441
原创 Windows Server 上的 RabbitMQ 安装和配置
本文详细介绍了在Windows Server上安装RabbitMQ的完整步骤:首先需安装Erlang运行环境,然后下载安装RabbitMQ并管理相关服务。文章还包含启用管理界面(默认访问地址localhost:15672,初始账号guest/guest)和修改默认密码的安全建议。整个安装过程简明清晰,适合需要搭建消息队列系统的用户参考。
2025-07-04 09:23:05
428
原创 在 Windows 机器上安装和配置 RabbitMQ
摘要:RabbitMQ是一款基于AMQP协议的流行消息代理工具,适用于Windows、Linux和macOS系统。本文详细介绍了在Windows上安装RabbitMQ的完整流程:首先安装Erlang/OTP,然后安装RabbitMQ服务,最后配置管理控制台。通过启用管理插件、创建管理员账户和设置权限等步骤,用户可以轻松管理消息队列。安装完成后,用户可通过浏览器访问localhost:15672使用RabbitMQ的强大功能,实现高效的数据管理和应用程序通信。
2025-07-04 08:53:09
924
原创 在 .NET Core 和 React 中使用 WebSockets 和 SignalR 进行实时数据传输
在本文中,我们探讨了如何在 .NET Core 与 React 应用程序中使用 WebSocket 和 SignalR 实现实时数据传输。利用 SignalR,您可以轻松实现客户端和服务器之间的实时通信,使其成为构建交互式协作 Web 应用程序的理想选择。无论您是构建聊天应用程序、实时仪表板还是多人游戏,SignalR 都能提供向用户提供实时更新所需的工具。
2025-07-03 09:23:57
1261
原创 在 React 中使用 WebSockets 构建实时聊天应用程序
本文详细介绍了使用React和WebSocket构建实时聊天应用的完整流程。首先通过Node.js的ws包创建WebSocket服务器端,实现消息的广播功能;然后使用React构建前端界面,通过WebSocket API实现与服务器的双向通信。文章包含具体代码示例,从项目初始化到组件开发的每个步骤,并提供了界面样式说明和测试方法。最后建议了用户认证、消息存储等生产环境增强功能。该指南为开发者提供了实现Web实时通信的实用解决方案,适用于构建消息平台等需要即时交互的应用场景。
2025-07-03 09:04:10
924
原创 Node.js 使用 WebSockets 和 Socket.IO 实现实时聊天应用程序
本文介绍了如何利用WebSockets和Socket.IO实现实时通信功能,构建一个简易聊天应用。首先阐述了WebSockets的全双工通信协议优势及其与HTTP的区别,以及Socket.IO库的简化作用。然后详细讲解了项目搭建过程,包括Node.js环境配置、Express服务器实现、WebSocket连接处理等关键步骤。通过创建服务器端(server.js)和客户端(HTML/CSS/JS)代码,演示了消息收发与广播的完整流程。最终构建的实时聊天应用展示了WebSockets在实现即时交互方面的强大能力
2025-07-02 09:39:35
923
原创 JavaScript 角度扫描(给定半径的圆内可以包含的最大点数)
摘要: 本文介绍了一种使用角度扫描算法(Angular Sweep)解决二维平面内定半径圆包含最多点数的优化方法。给定n个点和半径R,算法通过旋转圆并动态维护圆内点计数,将时间复杂度从朴素算法的O(n³)优化至O(n²logn)。核心步骤包括:计算点对距离,确定每个点作为旋转中心时的进入/退出角度,排序后统计最大点数。JavaScript实现展示了算法流程,空间复杂度为O(n)。该方法高效解决了几何覆盖问题,适用于大规模点集分析。
2025-07-02 09:00:06
812
原创 python 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了使用角度扫描算法求解二维平面上最多能被半径为R的圆包含的点数问题。该算法通过旋转圆并统计进入/退出圆的点,将时间复杂度从朴素算法的O(n^3)优化到O(n²logn)。具体步骤包括:1)计算点对距离;2) 对于每个点P,计算其他点进入/退出圆的角度;3) 排序角度并维护计数器。Python实现展示了算法核心:利用复数计算角度,排序处理并跟踪最大点数。算法适用于圆周上的点也被视为包含的情况,空间复杂度为O(n)。文末提供了示例代码及复杂度分析。
2025-07-01 09:15:48
591
原创 Java 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了解决"定半径圆包含最多点数"问题的两种算法。问题要求找出给定平面点集中能被半径为R的圆包含的最大点数(圆周上的点视为包含在内)。朴素算法通过枚举所有点对构造圆并检查包含点数,时间复杂度为O(n³)。更高效的"角度扫描算法"则通过旋转圆并动态维护包含点数,将复杂度优化至O(n²logn)。该算法利用几何关系计算点的进出角度,通过排序和扫描确定最大包含点数。文章详细阐述了算法原理,并提供了Java实现代码,展示了如何通过数学计算和角度处理来高效解决该几何问题。
2025-07-01 08:56:44
605
原创 C# 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了求解二维平面中给定半径圆内最多包含点数的算法。核心问题是在n个点中找到能被半径为R的圆包围的最大点数(圆周上的点也计入)。文章对比了朴素算法(O(n³))和优化的角度扫描算法(O(n²logn))。角度扫描算法通过以每个点P为中心旋转圆,计算其他点的进出角度,维护计数器获得最大值。提供C#实现代码,包含复数运算和角度处理逻辑。算法时间复杂度为O(n²logn),空间复杂度O(n),适用于大规模点集。文中给出示例输入输出验证算法正确性。
2025-06-30 09:16:12
712
原创 C++ 角度扫描(给定半径的圆内可以包含的最大点数)
本文介绍了在二维平面中求解给定半径的圆内能包含最多点数的算法。通过角度扫描(Angular Sweep)方法,将朴素算法的O(n³)复杂度优化到O(n²logn)。算法核心是:以每个点P为基准,计算其他点Q进入/离开旋转圆的角度范围,排序后扫描这些角度来统计圆内点数最大值。文中详细阐述了数学原理(利用向量夹角和距离公式)并提供了C++实现代码,包括关键步骤如距离预计算、角度排序和扫描计数。算法最终返回所有基准点中最大包含点数,示例测试输出验证了正确性。
2025-06-30 08:52:49
1008
原创 使用 Socket.IO 和 TypeScript 由 WebSockets 驱动的聊天应用程序
本文介绍了如何在TypeScript和React中使用Socket.IO构建更复杂的聊天应用,包含用户房间功能。作者通过对比之前基于ws库的项目,展示了Socket.IO的优势:内置房间管理、消息确认和重试机制。文章详细讲解了后端实现(Express+PostgreSQL)和前端集成(React),包括用户认证、房间加入/离开逻辑以及消息传递机制。特别强调了Socket.IO特有的功能如事件确认回调、自动重试和连接恢复,并提供了相关代码示例。最后指出下一步可改进的方向,如水平扩展和部署方案。
2025-06-28 11:42:27
988
原创 TypeScript 中的 WebSocket 入门
本文介绍了如何使用TypeScript和React创建基于WebSocket的简易聊天应用。作者通过monorepo结构搭建了包含客户端和服务端的项目,后端使用ws库和PostgreSQL数据库存储消息,前端通过isomorphic-ws连接WebSocket服务器。文章详细讲解了WebSocket服务器的搭建过程、消息广播机制以及客户端如何接收和显示消息。作者还分享了开发过程中遇到的挑战,如连接稳定性和消息渲染问题,并提出了改进方向(如心跳机制、用户管理)。该项目不仅实现了基础聊天功能,也为后续学习更复杂
2025-06-28 10:57:23
1013
原创 .Net Core 获取文件路径
本文介绍了在.NET6中获取文件路径的5种方法:(1)使用Directory.GetCurrentDirectory()获取当前工作目录;(2)在ASP.NET Core中通过IWebHostEnvironment获取根目录;(3)直接组合特定文件路径;(4)利用Path类处理路径并检查文件是否存在;(5)在Windows应用中使用OpenFileDialog让用户选择文件。文章强调应根据不同应用场景(命令行、Web或GUI)选择合适的方法,并推荐使用Path类来规范路径处理。每种方法都配有示例代码,方便开
2025-06-27 09:32:28
1001
原创 C# 高效加载txt文件内容
C#提供了多种高效读取TXT文件的方法:对于小型文件可使用File.ReadAllText一次性读取或File.ReadAllLines按行读取;处理大文件推荐使用StreamReader逐行读取以节省内存;需要底层控制时可结合FileStream使用。选择方法时应考虑文件大小和性能需求,小文件适合简单读取,大文件建议流式处理。通过合理选择这些方法,可以优化文件读取效率和内存使用情况。
2025-06-27 09:00:00
784
原创 C# .NET Framework 中的高效 MQTT 消息传递
摘要:本文介绍了轻量级通信协议MQTT及其在.NET中的实现。MQTT是一种高效的消息传递协议,具有低带宽、高可靠性等特点,适用于物联网等资源受限场景。文章详细讲解了在.NET项目中通过NuGet安装M2Mqtt包的步骤,并提供了完整的客户端代码示例,包括连接代理、订阅主题和处理消息的实现方法。最后对比了HiveMQ、RabbitMQ、Kafka和MQTT的适用场景,强调MQTT在低带宽环境中的优势。通过实际代码演示,帮助开发者快速掌握MQTT在.NET中的应用。
2025-06-26 09:11:10
1002
原创 如何在 .Net 7 中使用 MQTT 客户端
本文介绍了如何在.NET7中使用MQTTnet库实现MQTT消费者。MQTT是一种轻量级消息协议,适用于物联网和机器通信。文章详细说明了环境搭建步骤,包括安装.NET7和添加MQTTnet包,并提供了完整的代码示例:创建控制台应用,连接MQTT代理,订阅主题并处理消息接收。代码展示了连接/断开事件处理和消息接收回调的实现。该方法简洁高效,适合在资源受限环境中实现消息通信,为物联网开发提供了实用解决方案。
2025-06-26 08:36:38
1060
原创 PHP 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
该文介绍了一种算法:给定k个点,求以原点(0,0)为圆心的最小半径圆,使其至少包含k个点。方法是计算各点到原点的距离平方并排序,取第k小的距离作为半径平方。文中提供了PHP代码实现,时间复杂度为O(nlogn)。示例显示:当输入点(1,1),(-1,-1),(1,-1)且k=3时,输出为2;输入(1,1),(0,1),(1,-1)且k=2时,输出1。
2025-06-25 09:21:05
378
原创 Javascript 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文介绍了两种方法求解包含至少k个点的最小圆半径问题。第一种方法通过计算各点到圆心的欧氏距离平方,排序后取第k个值,时间复杂度O(nlogn)。第二种采用二分查找,在0到最大点间距范围内搜索最小半径,每次验证是否存在k个点在候选半径圆内,时间复杂度O(n²logr)。两种方法均以(0,0)为圆心,最终输出半径的平方值。示例展示了输入点[(1,1),(-1,-1),(1,-1)]且k=3时,输出结果为2,对应半径√2的圆。文章提供了完整的JavaScript实现代码。
2025-06-25 09:01:02
1367
原创 Python 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
摘要: 题目要求在以(0,0)为圆心的圆内至少包含K个给定点,求最小半径的平方。两种方法实现: 直接计算法:计算每个点到圆心的欧氏距离平方,排序后取第K小的值作为结果,时间复杂度O(n log n)。 二分查找法:在[0, 最大两点距离]范围内二分查找半径,检查是否存在包含K个点的圆,时间复杂度O(n² log r)。 示例中,点(1,1),(-1,-1),(1,-1)且K=3时,最小半径平方为2。代码展示了两种方法的实现及分析。
2025-06-24 09:21:20
611
原创 Java 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文提出了两种算法来寻找包含至少k个点的最小圆半径。第一种方法计算所有点到圆心的欧式距离平方,排序后取第k小的值作为结果,时间复杂度为O(n log n)。第二种方法采用二分查找,在0到最大点间距离范围内搜索最小半径,每次检查是否存在k个点位于圆内,时间复杂度为O(n² log r)。两种方法都给出了Java实现代码示例,适用于以原点为中心的圆,输出结果为半径平方值,其中第二种方法具有更优的时间复杂度。
2025-06-24 09:01:33
568
原创 C# 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文提出两种算法求解包含至少k个点的最小圆半径问题。第一种方法通过计算各点到圆心的距离平方并排序,直接取第k小的距离,时间复杂度O(nlogn)。第二种采用二分查找法,在[0,最大点距]范围内搜索最小半径,每次检查是否存在包含k个点的圆,时间复杂度O(n²logr)。两种方法均以C#实现,示例显示输入点集{(1,1),(-1,-1),(1,-1)}在k=3时输出最小半径平方为2。第一种方法空间复杂度O(n),第二种为O(1)。文章比较了两种算法的效率差异,适用于不同场景的需求。
2025-06-23 09:39:30
947
原创 C++ 找到最小半径 使得至少k个点位于圆内(Find minimum radius such that atleast k point lie inside the circle)
本文介绍了两种方法来求解包含至少K个点的最小圆半径问题。第一种方法计算每个点到圆心的距离平方并排序,直接取第K小的值作为结果,复杂度O(nlogn)。第二种方法采用二分查找,在[0,最大两点距离]范围内搜索满足条件的最小半径,复杂度O(n²logn)。两种方法都适用于以原点为中心的圆,其中第一种更高效,第二种则更具通用性。示例代码展示了两种实现方式,并给出了输入输出样例。该问题可应用于空间聚类、数据压缩等场景。
2025-06-23 09:00:02
845
原创 .Net Core 获取与bin目录相同文件路径的文件
摘要:本文介绍了在.NET Core中获取bin目录路径的几种方法。主要内容包括:1)使用AppContext.BaseDirectory获取应用程序基目录路径;2)通过Path.Combine结合文件名获取完整文件路径;3)在ASP.NET Core中获取bin目录的示例。这些方法适用于.NET 6环境,可以帮助开发者方便地定位bin目录下的文件。文中提供了详细的代码示例,包括文件存在性检查等实用功能。
2025-06-21 14:39:30
862
1
原创 升级到 .NET 9 分步指南
.NET 9正式发布:关键特性与迁移指南 微软正式推出.NET 9,带来多项重大改进: 性能优化:改进的AOT编译、更快垃圾回收和JIT编译 开发增强:LINQ可视化、AI驱动调试、混合缓存 跨平台支持:Blazor WebAssembly AOT、MAUI增强 迁移建议: 评估兼容性和依赖项 更新开发环境和工具链 重构弃用API 利用新特性优化性能 进行全面测试 .NET 9特别适合云原生开发,支持Kubernetes和微服务部署。迁移过程建议采用渐进式策略,并参考微软官方指南。
2025-06-21 14:23:50
849
1
原创 使用 .NET Core 7 SignalR 构建实时聊天应用程序
实时通信已成为现代 Web 应用程序不可或缺的一部分。无论您构建的是聊天应用程序、协作工作区还是实时仪表板,都需要一种可靠且高效的方式来实时发送和接收消息。SignalR 正是为此而生。SignalR 是 ASP.NET Core 的实时通信库。它允许您构建实时 Web 应用程序,这些应用程序可以在消息可用时立即将消息推送到客户端。SignalR 使用 WebSocket 作为默认传输协议,但它也可以使用其他传输协议,例如服务器发送事件 (SSE) 和长轮询。
2025-06-20 10:06:07
858
原创 使用 .NET Core 8.0 和 SignalR 构建实时聊天服务
使用 .NET Core 8.0 和 SignalR 构建实时聊天服务,本文重点介绍如何为一个实时聊天应用创建后端服务。该应用允许用户注册、创建聊天室,并分享房间 ID 或 URL 与他人进行群组对话。SignalR 是一个简化向应用程序添加实时 Web 功能的库。它主要使用 WebSocket 进行通信,但必要时可以回退到较旧的传输协议。SignalR 支持“服务器推送”功能,使服务器能够调用客户端方法,这与传统 HTTP 的请求-响应模型不同。
2025-06-20 08:55:00
835
原创 .NET 9.0 SignalR 支持修剪和原生 AOT
SignalR 是一个库,可用于向应用程序添加实时 Web 功能。它提供了一个简单的 API,用于创建可从服务器和客户端调用的服务器到客户端远程过程调用 (RPC)。现在,SignalR 在 .NET 8.0 和 .NET 9.0 中支持修剪和原生 AOT。AOT(提前编译)功能允许您在运行应用程序之前将其编译为原生代码。这有助于提升性能并缩短启动时间。Triming 功能允许您从应用程序中移除未使用的代码,从而减小应用程序大小并提升性能。
2025-06-19 10:12:59
909
原创 ASP.NET Core 9.0 SignalR 新功能
ASP.NET Core SignalR在.NET 9中迎来重要更新:1)支持基类多态处理,Hub方法可直接接收基类参数(如Animal)并通过派生类(Cat/Dog)处理;2)增强诊断功能,与OpenTelemetry深度集成,支持在Aspire仪表板监控SignalR事件;3)新增对修剪和原生AOT编译的支持,提升性能,但需注意JSON序列化和返回值类型限制。这些改进使SignalR更强大且更易监控。
2025-06-19 10:00:22
790
原创 PHP 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:正方形外接圆面积公式为(πa²)/2,其中a为边长。原理是正方形对角线为a√2,半径r=(a√2)/2,代入圆面积公式πr²即得结果。PHP示例代码展示计算过程,时间复杂度O(1)。适用于给定边长快速求解外接圆面积,如输入6得56.55。该几何问题突出了正方形对角线与外接圆半径的关系。
2025-06-18 10:12:02
436
原创 Javascript 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:计算正方形外接圆面积的公式为(πa²)/2,其中a为正方形边长。推导过程:外接圆半径等于正方形对角线的一半,即r=(a√2)/2,代入圆面积公式πr²即得结果。示例:当a=6时,面积≈56.55。该方法时间复杂度为O(1),高效直接。
2025-06-18 09:39:30
464
原创 Python 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:正方形外接圆的面积可通过公式(πa²)/2计算,其中a为正方形边长。原理是圆的半径等于正方形对角线的一半(半径=(a√2)/2),代入圆面积公式πr²得到结果。示例:边长为6的正方形,外接圆面积为56.55。该算法时间复杂度为O(1),效率极高。
2025-06-17 10:13:46
373
原创 Java 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:已知正方形边长a,其外接圆面积可通过公式(PI*a²)/2计算。原理是外接圆半径等于正方形对角线的一半(r=a√2/2),代入圆面积公式πr²即得结果。示例:当a=6时,面积为56.55。该算法具有O(1)时间/空间复杂度,适用于快速计算。
2025-06-17 09:11:21
588
原创 C# 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:已知正方形边长a,其外接圆面积公式为(πa²)/2。推导过程:外接圆半径等于正方形对角线的一半,而对角线长为a√2,故半径r=(a√2)/2。代入圆面积公式πr²得到(πa²)/2。示例:当a=6时,面积≈56.55;a=4时≈25.13。该算法时间复杂度为O(1),实现简单高效。(98字)
2025-06-16 09:38:00
727
原创 C++ 正方形外接圆的面积(Area of a Circumscribed Circle of a Square)
摘要:已知正方形边长a,求其外接圆面积的方法是:外接圆半径等于正方形对角线的一半,即r=(a√2)/2。代入圆面积公式得面积S=πr²=(πa²)/2。示例:a=6时面积为56.55,a=4时为25.13。该算法通过直接计算实现,时间复杂度和空间复杂度均为O(1)。(149字)
2025-06-16 09:15:22
715
原创 .NET 8 中的原生 AOT 编译
摘要:.NET原生AOT(预先编译)功能可生成无需运行时环境的独立应用,显著提升性能(启动时间缩短28%,体积减少35%)。.NET 8在AOT支持上新增多项改进:增强JSON处理、性能优化类型(如FrozenDictionary)、硬件加速支持等。启用方式为在项目文件中添加<PublishAot>true</PublishAot>,并可选择优化偏好(速度/体积)。实测显示.NET 8 AOT应用体积仅1.2MB,启动时间约2毫秒。不过该技术仍存在兼容性限制,建议评估项目需求后使用。
2025-06-14 09:26:45
1492
原创 使用 C# 源生成器(Source Generators)进行高效开发:增强 Blazor 及其他功能
摘要:.NET源生成器通过编译时静态代码生成显著提升开发效率和性能。本文探讨了其在Blazor中的四大优势:自动化重复代码、性能优化、生产力提升和代码一致性保障,并展示如何自动生成表单组件。源生成器同样适用于API客户端生成、数据库集成等场景。虽然存在学习曲线和调试挑战,但它仍是.NET生态中提高开发效率的关键技术,特别推荐在Blazor和复杂项目中使用。
2025-06-14 09:04:14
1223
将大学阶段的实训内容,按照专业课程设计(包括上机实验、课程设计、下学年的毕业设计等)、竞赛项目、科创项目、小型编程项目这四个门类进行整理汇总
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.1
2025-03-05
带有 Multisim 10 示例的基本电子电路
2025-03-05
面向 .NET 开发人员的 DeepSeek API SDK DeepSeekSDK-NET-1.1.4
2025-03-05
用于快速工程的指南、论文、讲座、笔记本和资源 Prompt-Engineering
2025-03-05
springmvc框架模板(含例子,可以用作计算机毕业设计开发) springmvc源代码
2025-03-05
机器人算法的 Python 示例代码
2025-03-05
OpenCV C++ 示例
2025-03-05
.NetCore WPF Rtsp视频流转Websocket实现Web实时查看摄像头 C#通过FFmpeg播放Rtsp流
2025-03-03
使用 SignalR 在 .NET Core 8 最小 API 中构建实时通知
2025-03-03
C# 简单数字时钟源代码
2025-03-03
C++与C#(仅支持YUV2编码格式下截图)EasyPlayer RTSP是一款精炼、高效、稳定的RTSP流媒体播放器
2025-03-03
适用于 .NET Core 3.0-.NET 5.0 的 C# RTSP 客户端 视频截图
2025-03-03
在 .net 9 中如何重新添加Swagger或改用Scalar
2025-02-20
在 .NET 9.0 Web API 中实现 Scalar 接口文档及JWT集成
2025-02-20
在 ASP .NET Core 9.0 中使用 Scalar 创建漂亮的 API 文档
2025-02-20
.NET 9 彻底改变了 API 的文档:从 Swashbuckle 到 Scalar
2025-02-19
TypeScript 中的 WebSocket 入门
2025-06-25
使用 .NET Core 和 SignalR 构建实时聊天服务-聊天客户端(前端)
2025-06-12
使用 .NET Core 和 SignalR 构建实时聊天服务-聊天服务(后端)
2025-06-12
使用 .NET Core 7 SignalR 构建实时聊天应用程序
2025-06-12
.NetCore 8.0 反射与源生成器(Reflection vs Source Generators)
2025-06-06
postgis测试数据库 科罗拉多州百年一遇的洪泛区 包含 kmz、geojson、shapefile
2025-03-20
该项目是一个轻量级 AI 代理,利用 Deepseek LLM 在本地运行并与 Spring Boot 集成
2025-03-06
PHP API 客户端,可让您与 deepseek API 进行交互 deepseek-php-client-2.0.3
2025-03-06
deepseek java sdk deepseek4j-1.4.5
2025-03-06
.NET 9.0 中 DeepSeek 模型入门示例
2025-03-06
DeepSeek API 的 Python 客户端
2025-03-06
使用 PHP Deepseek 实现问答 ask-deepseek
2025-03-06
C++ 基础知识了解、学习及源代码案例分享
2025-03-05
C语言比较全面的经典源代码示例包含220个例子
2025-03-05
deepseek java sdk deepseek4j-1.4.3
2025-03-07
Windows 解压版 PostgreSQL16.8-1
2025-03-18
Windows 解压版 PostgreSQL16.8-1 对应 PostGIS 3.5.2
2025-03-18
python 强大的混合专家 (MoE) 语言模型 DeepSeek-V3
2025-03-06
使用纯 C++ 对 DeepSeek 系列大型语言模型进行 CPU 推理
2025-03-06
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人