C++ 找到平行四边形的所有可能坐标(Find all possible coordinates of parallelogram)

从三个坐标中找出所有可能的坐标,构成一个非零面积的平行四边形。
假设 A、B 和 C 是三个给定点。我们只能得到以下三种可能的情况: 

(1)AB 和 AC 为边,BC 为对角线
(2)AB 和 BC 为边,AC 为对角线
(3)BC 和 AC 为边,AB 为对角线

因此,我们可以说,如果给定三个坐标,那么只有三个坐标才有可能生成平行四边形。
为了证明这三个点都不相同,我们假设它是错误的。不失一般性,假设在AD和BC的情况下得到的点相等。 

考虑这些点相等的两个方程组:  

B x + C x - A x = A x + C x - B x
B y + C y - A y = A y + C y - B y

可以简化为- 

A x = B x
A y = B y

如图:

我们得到了矛盾,因为点 A、B、C 都是不同的。

例子: 

输入:A = (0 0) 
         B = (1 0) 
         C = (0 1)
输出:1 -1 
         -1 1 
          1 1

输入:A = (-1 -1) 
         B = (0 1) 
         C = (1 1)
输出:-2 -1 
          0 -1 
          2 3

由于对边相等,AD = BC 且 AB = CD,我们可以计算出缺失点 (D) 的坐标: 

AD = BC
(D x - A x,D y - A y)=(C x - B x,C y - B y)
D x = A x + C x - B x D y = A y + C y - B y 

如图: 

对角线为AD和BC、CD和AB的情况处理方式相同。

以下是上述方法的实现:  

// C++ program to all possible points
// of a parallelogram
#include <bits/stdc++.h>
using namespace std;
 
// main method
int main()
{
   int ax = 5, ay = 0; //coordinates of A
   int bx = 1, by = 1; //coordinates of B
   int cx = 2, cy = 5; //coordinates of C
    cout << ax + bx - cx << ", "
         << ay + by - cy <<endl;
    cout << ax + cx - bx << ", "
         << ay + cy - by <<endl;
    cout << cx + bx - ax << ", "
         << cy + by - ax <<endl;
    return 0;

输出:

4,-4 
6,4 
-2,1

时间复杂度: O(1)

辅助空间: O(1)

如果有人有在空间和时间方面更高效的更好解决方案,请提出建议。

如果您喜欢此文章,请收藏、点赞、评论,谢谢,祝您快乐每一天。 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

csdn_aspnet

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值