使用 Flowise 构建基于 RAG 的问答系统

image-20250424104443139

使用 Flowise 构建基于 RAG 的问答系统


本文将详细介绍如何使用 Flowise 构建一个基于 RAG(Retrieval-Augmented Generation) 的问答系统。我们将从文档加载到最终对话的完整流程进行讲解,帮助您快速上手并理解每个步骤的关键点。


1. 加载文档

在构建 RAG 系统的第一步,我们需要加载目标文档。Flowise 提供了多种组件来支持不同格式的文件加载。在这里,我们选择使用 Pdf File 组件来加载 PDF 文件。

加载 PDF 文件

通过该组件,您可以轻松上传和解析 PDF 文件,为后续的文本处理做好准备。


2. 文本分割

为了更好地处理和检索文档内容,我们需要对加载的文本进行分割。Flowise 提供了 Character Text Splitter 组件,用于将长文本切割成更小的片段。

文本分割

以下是该组件的主要参数:

  • Chunk Size :每个片段的字符数,默认值为 1000。
  • Chunk Overlap :相邻片段之间的重叠字符数,默认值为 200。注意,这个值不能大于或等于 Chunk Size。
  • Custom Separator :自定义分隔符,用于确定分割位置,会覆盖默认分隔符。

合理设置这些参数可以确保分割后的文本片段既独立又连贯,为后续的嵌入和检索打下基础。


3. 嵌入(Embedding)

嵌入是 RAG 系统的核心步骤之一,它将文本数据映射到高维向量空间,以便进行高效的相似性检索。在 Flowise 中,我们可以选择多种嵌入模型。本文中,我们使用 OpenAI 的 text-embedding-3-large 模型。

嵌入模型

该模型能够生成高质量的文本向量,为后续的向量存储和检索提供强有力的支持。


4. 向量存储

Faiss 向量数据库

Flowise 集成了多种向量存储数据库,其中 Faiss 是由 Facebook(现 Meta)开源的高性能向量数据库。它非常适合大规模向量检索任务。

在 Flowise 中,Faiss 组件的必填项包括:

  • Embeddings :需要连接到前面配置的嵌入模型组件。
  • Base Path to Load :指定向量数据的存储路径。

通过将 OpenAI EmbeddingsPdf File 组件连接到 Faiss 组件,我们可以将生成的向量数据持久化存储。

Faiss 向量存储


5. 检索与问答

Conversational Retrieval QA Chain

这是 RAG 系统的核心组件,用于执行带有检索功能的问答任务。通过该组件,我们可以实现基于文档知识的智能问答。

问答链

它的关键参数包括:

  • Chat Model :选择一个大语言模型(如 GPT-4 或其他支持的模型)。
  • Vector Store Retrieval :连接到前面配置的 Faiss 组件。

完成配置后,保存设置即可进入下一步。


6. 解析与更新向量存储

在保存配置后,右上角的对话按钮旁边会出现一个图标,表示系统已准备好进行解析和更新。

解析图标

点击 Upsert Vector Store 按钮,等待系统完成向量存储的更新操作。

更新向量存储

更新完成后,系统即可开始基于文档知识的对话交互。


7. 对话效果展示

对话界面

在完成上述步骤后,您可以与系统进行对话,体验基于文档知识的问答功能。

对话效果

文档知识提取

系统能够准确地从文档中提取相关信息,回答您的问题。

文档知识


总结

通过 Flowise 构建基于 RAG 的问答系统,我们可以高效地实现从文档加载到智能问答的全流程。以下是关键步骤的总结:

  1. 加载文档 :使用 Pdf File 组件加载目标文档。
  2. 文本分割 :通过 Character Text Splitter 将文本切割为适合处理的小片段。
  3. 嵌入 :利用 OpenAI 的 text-embedding-3-large 模型生成高质量的文本向量。
  4. 向量存储 :借助 Faiss 数据库存储和管理向量数据。
  5. 检索与问答 :通过 Conversational Retrieval QA Chain 实现基于文档知识的智能问答。
  6. 解析与更新 :完成向量存储的更新,确保系统能够实时响应。
  7. 对话体验 :与系统交互,验证问答效果。

希望本文能帮助您快速掌握 Flowise 的使用方法,并成功构建自己的 RAG 系统!如果您有任何问题或建议,欢迎在评论区留言交流。

### Flowise Agent 策略的使用与配置 Flowise 是一款强大的无代码平台,用于构建复杂的大模型应用[^1]。它支持多种 Agent 策略,这些策略可以通过工具链和工作流来实现复杂的任务自动化。以下是关于 Flowise 中 Agent 策略的使用与配置方法: #### 1. **Agent 的基本概念** Agent 是一种能够根据用户输入执行特定任务的智能体。在 Flowise 中,Agent 可以通过 LangChain 提供的工具集进行扩展,从而实现更复杂的逻辑处理[^3]。 #### 2. **工具(Tools)的定义** 工具是 Agent 执行具体任务的核心组件。每个工具通常包含一个名称、功能描述以及实际的函数实现。例如,在以下代码中,定义了两个工具:`Search` 和 `Calculator`。 ```python from langchain.agents import Tool tools = [ Tool( name="Search", func=search_api, description="用于搜索实时信息" ), Tool( name="Calculator", func=math_calculator, description="用于数学计算" ) ] ``` #### 3. **Agent 的创建** 在 Flowise 中,可以使用 LangChain 提供的 `create_react_agent` 方法来创建一个基于反应式架构的 Agent。该 Agent 能够根据用户输入动态选择合适的工具并执行相应操作。 ```python from langchain.agents import create_react_agent, AgentExecutor agent = create_react_agent(llm, tools, prompt_template) agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True) ``` #### 4. **调用 Agent** 通过 `invoke` 方法,可以向 Agent 发送输入并获取输出结果。例如,以下代码展示了如何查询上海的今日气温。 ```python response = agent_executor.invoke({"input": "上海今日气温是多少华氏度?"}) print(response) ``` #### 5. **多轮对话的支持** 为了实现多轮对话,可以结合知识图谱和实体链接技术,增强系统的背景知识库和推理能力。这使得 Agent 能够更好地理解用户的意图,并提供更加准确的响应[^5]。 #### 6. **私有知识库的集成** 在某些场景下,可能需要让 Agent 基于企业的私有知识库进行问答。此时可以使用向量数据库(如 Pinecone)来存储和检索相关信息。Flowise 提供了详细的教程,指导用户如何构建基于 RAG(Retrieval-Augmented Generation)的智能客服 Agent[^4]。 --- ### 示例总结 通过上述步骤,可以完成 Flowise 中 Agent 策略的配置与使用。关键在于合理定义工具链、选择合适的 Agent 类型,并根据具体需求集成外部资源(如私有知识库或向量数据库)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值