试用SVO_edgelet

本文记录了作者使用SVO_edgelet进行自动驾驶相关研究的初步体验。通过尝试将SVO作为前端跟踪器,并结合其他后端算法如VINS、DSO和ORB-SLAM进行对比,发现SVO在跟踪和重定位方面存在不足,而DSO对旋转的敏感度更高,ORB-SLAM的表现优于前两者但仍不理想。作者计划继续优化并考虑采用vio算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为SVO有深度滤波器,3D点重建精度很不错,所以最近有一个idea是用SVO作为前端跟踪,基于SVO的点云地图,把vins的后端扒上去实现重定位和回环。所以今天来试试SVO的效果。

参考了一下这篇文章:

调试SVO_edgelet - _杰轩 - 博客园

用tum数据集的格式跑了一下自己的图片,因为SVO不提供鱼眼模型,就先自己矫正好了直接跑:

cam_ = new svo::PinholeCamera(640, 480, 481.20, 480.00, 319.50, 239.50);

结果很差:

虽然初始化成功了,直走还能跟踪,但点在肉眼可见的减少,一转动,很快点就都丢了,开始重定位(并失败)。 又参考了一下下面这篇文章,SVO的机制还是比较naive,基本跟丢了就找不回来了。如果要基于SVO做的话,工作还有很多。

SVO详细解读 - 极品巧克力 - 博客园

后续计划:

1.等IMU数据调好了,试试VINS的结果。

2.试试orb-slam和ds

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值