安装TensorFlow2.0

本文详细介绍了如何通过终端命令行和Anaconda Navigator图形界面两种方式安装TensorFlow2.0,包括创建独立环境、安装相关软件包及测试TensorFlow等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.使用终端安装

以下操作均在命令行进行(注意黑色小圆点是分隔符,无需输入)

第一步 : 创建独立环境并激活
  • conda create --name tensorflow2.0 python==3.7
  • activate tensorflow2.0
第二步 :安装相关软件包
  • pip install numpy matplotilb Pillow scikit-learn pandas -i https://pypi.tuna.tsinghua.edu.cn/simple
第三步 : 安装TensorFlow2.0
  • pip install tensorflow==2.0.0-beta -i https://pypi.tuna.tsinghua.edu.cn/simple
第四步 : 测试TensorFlow2.0
  • 在命令行输入python,打开python交互模式
  • 输入代码 : import tensorflow as if
2.使用ANACONDA NAVIGTOR图形界面可视化安装
第一步: 使用Anaconda镜像使用帮助根据提示修改.condarc文件:

1>Windows 用户无法直接创建名为 .condarc 的文件,可先执行 conda config --set show_channel_urls yes 生成该文件之后再修改。此时,目录 C:\Users<你的用户名> 下就会生成配置文件.condarc,内容如下:
在这里插入图片描述
2>修改上述配置文件,删除上述配置文件 .condarc 中的第三行,然后保存,最终版本文件如下:

在这里插入图片描述

3>查看是否生效,通过命令 conda info 查看当前配置信息,内容如下,即修改成功,关注 channel URLs 字段内容
在这里插入图片描述
修改方法参考自:
https://jingyan.baidu.com/article/1876c8527be1c3890a137645.html

第二步 : 创建新的独立运行环境:

1>进入ANACONDA NAVIGTOR界面,进行如下操作:
点击箭头所指位置
在这里插入图片描述
出现如下界面:
在这里插入图片描述

输入如下:

在这里插入图片描述
之后点击Create按钮(由于我已经创建了,所以Create亮),等待片刻,会出现如下界面:
你会多一个红圈中的内容;
在这里插入图片描述

第三步 : 检验TensorFlow是否安装成功

1>点击第二步中红圈中的内容,等待片刻,再点击其右边的三角,选中Open Terminal并点击,进入如下界面:

在这里插入图片描述

2>输入python, 回车:操作和结果如下:

在这里插入图片描述
3>输入 import tensorflow as tf :
结果如下表示安装成功:
在这里插入图片描述
上述 3> 中的操作完成后可能出现如下情况(我遇到的):

在这里插入图片描述
解决方案有两种:
1> 进入dtype.py,修改对应行的代码,把np.dtype([(“quint8”, np.uint8, 1)])修改为np.dtype([(“quint8”, np.uint8, (1,))])就完美解决了
参考自:
https://blog.csdn.net/BigDream123/article/details/99467316
2>适当降低 numpy 的版本
用 pip uninstall unmpy命令 卸载当前numpy
使用 pip insall numpy==版本号(1.16.4) -i https://pypi.tuna.tsinghua.edu.cn/simple
安装numpy
括号中是我用的numpy版本仅供参考,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值