lstm原理+timesteps理解+实操+时间序列多变量

本文介绍了LSTM的工作原理,重点解释了时间步长(timesteps)的理解,包括如何将多变量时间序列数据转化为适合LSTM模型的格式。实操部分展示了LSTM模型的构建,强调了在处理多变量和多步预测时的注意事项。此外,还讨论了LSTM的变种,如GRU,并引用了相关研究比较不同RNN结构的性能,指出在特定情况下GRU可能因为参数少而训练更快,但LSTM在数据充足时可能表现更优。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理

李宏毅老师讲RNN LSTM 视频
很好地讲述了lstm的原理。
在这里插入图片描述

timesteps理解

lstm的样本:样本数,时间步长,特征数量,在时间序列中如何转化?
对于多变量时间序列的预测,最后一段解释了。
y~y-1 y-2 y-3 x-1 x-2 x-3
假定样本数600,一个因变量,6个自变量(yx的滞后项)
那么,可以这样写:
(600,1,6):timesteps为1,不进行记忆的传递,特征数为6.
(600,6,1):timesteps为6,只有一个特征,但是记忆传递6次
(600,3,2):2个特征,滞后3次:注意在r转化矩阵时,要检验得到的矩阵是否准确
这取决于我们的自变量特征上下文是否有联系。
在这里插入图片描述

实操

lstm代码jason
这里设置timestep=1
首先需要把2维的时间序列多变量数据转化为3维,inputoutput不用管,选用dense,隐藏层用lstm层。

#python
# split 
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值