人工智能之数学基础【偏导数、梯度】

本文介绍了偏导数和梯度的概念,梯度是函数在某点上升最快的方向,而Hessian矩阵则涉及函数的二阶导数,表示函数曲面的曲率信息。通过实例展示了如何计算一个目标函数的梯度和Hessian矩阵,帮助读者深入理解这些数学基础在人工智能中的应用。
偏函数、梯度

设n元函数f(x)f(x)f(x),自变量x=(x1,x2,⋯ ,xn)Tx=(x_1,x_2,\cdots,x_n)^Tx=(x1,x2,,xn)T的各分量xix_ixi的偏导数∂f(x)∂xi(i=1,2,⋯ ,n)\frac{\partial f(x)}{\partial x_i}(i=1,2,\cdots,n)xif(x)(i=1,2,,n)都存在,则称函数f(x)f(x)f(x)xxx处一阶可导,并成为向量:
∇f(x1,x2,⋯ ,xn)=gradf(x1,x2,⋯ ,xn)=(∂f∂x1∂f∂x2,⋯ ,∂f∂xnT) \nabla f(x_1,x_2,\cdots,x_n)=grad f(x_1,x_2,\cdots,x_n)=(\frac{\partial f}{\partial x_1}\frac{\partial f}{\partial x_2},\cdots,\frac{\partial f}{\partial x_n}^T) f(x1,x2,,xn)=gradf(x1,x2,,xn)=(x1fx2f,,xnfT)
为函数f(x)f(x)f(x)xxx处的一阶导数或者梯度。其中符号“∇\nabla”称为梯度算子,它作用于一个多元函数,得到一个向量。例如:
∇(x2+2xy+y2)=(2x+2y,2x+2y)T\nabla(x^2+2xy+y^2)=(2x+2y,2x+2y)^T(x2+2xy+y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WEL测试

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值