ZJOI2008树的计算--树链剖分裸题

本文分享了一次树链剖分的实际编码经历,作者通过解决一个具体问题,详细记录了从理解算法到实现过程中的难点与心得,特别是针对dfs时top位置易犯的错误进行了深入剖析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次写树链剖分。。昨天晚上看到JMCDY(%%%)在不屑地写这道题,我便写了一波。

dfs的时候top的位置写错了。。。找了好久,迷之错误。

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=30005,inf=0x3f3f3f3f;
int Max[maxn*4],val[maxn*4],Maxans,Sumans;
void maintain(int p,int u,int v){
    Max[p]=max(Max[u],Max[v]);
    val[p]=val[u]+val[v];
}
void update(int p,int l,int r,int pos,int w){
    if((l==pos)&&(r==pos)){
        Max[p]=val[p]=w;
        return;
    }
    int mid=(l+r)>>1,u=p<<1,v=u+1;
    if(pos<=mid)update(u,l,mid,pos,w);
    else update(v,mid+1,r,pos,w);
	maintain(p,u,v);
}
void query(int p,int l,int r,int L,int R){
    if((l==L)&&(r==R)){
        Maxans=max(Maxans,Max[p]);
        Sumans+=val[p];
        return;
    }
    int mid=(l+r)>>1,u=p<<1,v=u+1;
    if(R<=mid)query(u,l,mid,L,R);
    else if(L>mid)query(v,mid+1,r,L,R);
    else{
		query(u,l,mid,L,mid);
		query(v,mid+1,r,mid+1,R);
	}
}
int tmp[maxn],Begin[maxn],Next[maxn*2],to[maxn*2],e;
int id[maxn],fa[maxn],dep[maxn],top[maxn],sz[maxn],Mson[maxn],tot,n;
void add(int u,int v){
    to[++e]=v,Next[e]=Begin[u],Begin[u]=e;
}
void create(int u){
    sz[u]=1;
    for(int i=Begin[u];i;i=Next[i]){
        int v=to[i];
        if(v==fa[u])
            continue;
        dep[v]=dep[u]+1;
        fa[v]=u;
        create(v);
        sz[u]+=sz[v];
        if(sz[v]>sz[Mson[u]])
            Mson[u]=v;
    }
}
void dfs(int u){
    id[u]=++tot;
    update(1,1,n,id[u],tmp[u]);
    if(!Mson[u])
        return;
    top[Mson[u]]=top[u];
    dfs(Mson[u]);
    for(int i=Begin[u];i;i=Next[i]){
        int v=to[i];
        if(id[v])
            continue;
        top[v]=v;
        dfs(v);
    }
}
void solve(int u,int v){
    Maxans=-inf;
    Sumans=0; 
	while(top[u]!=top[v]){
        if(dep[top[u]]<dep[top[v]])
			swap(u,v);
		query(1,1,n,id[top[u]],id[u]);
		u=fa[top[u]];
    }
    if(dep[u]>dep[v])swap(u,v);
    query(1,1,n,id[u],id[v]);
}
int main(){
    int m,u,v;
    scanf("%d",&n);
    for(int i=1;i<n;i++){
        scanf("%d%d",&u,&v);
        add(u,v),add(v,u);
    }
    for(int i=1;i<=n;i++)
        scanf("%d",&tmp[i]);
    dep[1]=1;
    top[1]=1;
    create(1);
    dfs(1);
    char ch[10];
    scanf("%d",&m);
    while(m--){
        scanf("%s%d%d",ch,&u,&v);
        if(ch[1]=='H')
            update(1,1,n,id[u],v);
        else{
            solve(u,v);
            int ans=(ch[1]=='M')?Maxans:Sumans;
            printf("%d\n",ans);
        }
    }
    return 0;
}


<think>好的,我现在需要回答用户关于Shmoo测试的问题。首先,用户问的是什么是Shmoo测试,它的原理应用。我需要先理解Shmoo测试的基本概念,然后整理出它的工作原理实际应用场景。 首先,根据提供的引用资料,引用[1]提到Shmoo有助于快速了解故障可能的原因,以及在安装中查找调试的位置。这说明Shmoo测试主要用于芯片测试中的故障分析。接下来,我需要确认Shmoo测试的具体定义,可能需要结合其他资料,但根据现有引用,可以推断Shmoo测试是通过绘制Shmoo来分析芯片在不同电压、频率等参数下的表现,从而找出故障点。 关于原理,Shmoo测试应该涉及参数扫描,比如改变电压或频率,观察芯片的输出是否符合预期。引用[1]提到测试时的失败被分析调试,所以原理可能是在不同条件下测试芯片,生成Shmoo来识别故障模式。 应用方面,引用[1]提到在芯片测试中用于快速定位故障,提高良率。此外,引用[2]提到开路/短路测试帮助诊断测试系统的问题,这可能与Shmoo测试的应用场景相关,比如在测试过程中结合其他测试方法确保设备接触良好,从而准确执行Shmoo测试。 现在需要确保回答结构清晰,分点说明定义、原理应用,并正确引用提供的资料。同时,根据用户要求,生成相关问题,可能需要涉及Shmoo的分析、测试参数、应用领域等。 检查是否需要使用正确的LaTeX格式,比如行内公式用$...$,独立公式用$$...$$。但当前问题不涉及数学公式,可能不需要使用。不过如果有相关参数,比如电压V频率f的关系,可能需要公式,但根据现有资料,暂时不需要。 最后,生成相关问题,要围绕Shmoo测试的原理、应用、与其他测试方法的比较等。</think>### Shmoo测试详解 #### 1. 定义与核心概念 Shmoo测试是一种用于半导体芯片测试形化分析方法,通过扫描芯片的关键参数(如电压、频率、时序等),绘制出反映芯片性能边界的“Shmoo”[^1]。其名称来源于卡通形象“Shmoo”,因其形通常呈现不规则形状而得名。 #### 2. 工作原理 - **参数扫描**:对目标参数进行阶梯式调整,例如: - 供电电压 $V_{DD}$ 从0.8V到1.2V以0.01V步进 - 时钟频率 $f_{CLK}$ 从100MHz到2GHz扫描 - **响应检测**:记录芯片在每个参数组合下的测试结果(通过/失败) - **形绘制**:将测试结果映射为二维或三维形,形成特征区域 典型测试流程: ```text 参数配置 → 测试执行 → 数据采集 → 形生成 → 故障分析 ``` #### 3. 关键应用场景 1. **良率提升**:快速定位参数敏感区域(如电压-频率组合的失效边界) 2. **故障隔离**:识别制造缺陷类型(如时序违例、信号完整性等问题) 3. **可靠性验证**:评估芯片在不同工作条件下的稳定性 4. **测试系统校准**:结合开路/短路测试验证探针接触质量[^2] #### 4. 技术特点对比 | 特性 | Shmoo测试 | 传统功能测试 | |---------------|----------------|---------------| | 诊断粒度 | 晶体管级特性 | 模块级功能 | | 测试数据量 | 百万级数据点 | 千级测试向量 | | 分析维度 | 多参数相互作用 | 单参数验证 | ####
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值