新型在线预测模型DeepGBM(基于GBDT扩展的深度学习框架)

DeepGBM是一种融合了神经网络和GBDT优势的在线预测框架,它针对表格数据中的稀疏类别和稠密数值特征进行有效处理,并能高效应对在线数据动态生成。DeepGBM包含CatNN处理类别特征和GBDT2NN处理数值特征,通过叶节点嵌入提高效率。实验显示,DeepGBM在多个在线预测任务上优于其他模型,具有更快的收敛速度和更好的预测性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DeepGBM: A Deep Learning Framework Distilled by GBDT for Online Prediction Tasks

Guolin Ke, Zhenhui Xu, Jia Zhang, Jiang Bian, Tie-Yan Liu

Microsoft Research, Peking University

KDD 2019

http://delivery.acm.org/10.1145/3340000/3330858/p384-ke.pdf

在线预测在很多实际应用中起着非常重要的作用。典型在线预测任务有两个特点,其一即为表格形式的输入空间,其二即为在线的数据生成。表格形式的输入空间,意味着其中既有比较稀疏的类别型特征,又有比较稠密的数值型特征;在线的数据生成,暗含着任务以指数动态分布的形式产生连续的数据。

既能比较有效的处理表格形式的输入空间,又可以比较快的自适应到在线的数据生成中,成为在线预测模型中的两大重要挑战。虽然梯度提升决策树(GBDT)和神经网络在实际中广泛应用,但是二者皆有其劣势。比如,GBDT很难应用于线上动态生成的数据,而且在应对比较稀疏的特征时很难取得较好的效果;同时,对于神经网络,该模型在应对稠密数值特征时很难取得好效果。

本文提出一种新的学习框架,DeepGBM,该框架能够集成神经网络和GBDT的优势,其中包含了两种神经网络,一种是CatNN,这种网络集中处理稀疏类别型特征,另一种是GBDT2NN,这种模型集中处理数值型特征,其中借助从GBDT提取到的知识。得益于这两种神经网络,DeepGBM既可以处理类别特征,又可以处理数值型特征,同时保证高效的在线更新。

在多个公开数据集上的大量实验表明,DeepGBM在多个在线预测任务上的效果优于其他比较好的基准模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值