Leecode传送门:15. 三数之和 - 力扣(LeetCode)
给你一个整数数组
nums
,判断是否存在三元组[nums[i], nums[j], nums[k]]
满足i != j
、i != k
且j != k
,同时还满足nums[i] + nums[j] + nums[k] == 0
。请你返回所有和为
0
且不重复的三元组。注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4] 输出:[[-1,-1,2],[-1,0,1]] 解释: nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。 nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。 nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。 不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。 注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1] 输出:[] 解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0] 输出:[[0,0,0]] 解释:唯一可能的三元组和为 0 。
C++完整代码实现如下:
class Solution {
public:
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> answer;
int len = nums.size();
sort(nums.begin(), nums.end());
//注意:答案中不可以包含重复的三元组
//输出的顺序并不重要,即默认排序i<j<k可以避免重复出现的三元组
for (int i = 0; i < len - 2; i++) {//len-2预留出j(len-2)和k(len-1)的空间
if (i > 0 && nums[i] == nums[i - 1]) {
continue;
}
//定义双向指针j和k,由于确定了i的for循环遍历,即在每一层循环里i是确定的
//即可将三个不确定的数之和转换为两个不确定数的和
int j = i + 1;
int k = len - 1;
/*这里进行了一个优化,由于现在数组已经排好序如果以i为起始元素与邻接两元素相加之和
已经大于指定target值0,那么再往相加的值肯定大于0,直接break退出所有循环*/
if((nums[i]+nums[i+1]+nums[i+2])>0){
break;
}
if(nums[len-1]+nums[len-2]+nums[len-3]<0){
break;
}
while (j < k) {
int start = nums[j];
int end = nums[k];
int result = nums[i] + start + end;
if (result > 0) {
k--;
}
if (result < 0) {
j++;
}
if (result == 0) {
//answer的数据结构类型为vector<vector<int>>
//即是一个存储类型为vector<int>的动态向量类型数组
answer.push_back({nums[i], nums[j], nums[k]});
j++;//正向指针继续往后走
while(j < k && nums[j] == nums[j - 1]) {
j++;//避免重复数值,若相邻两个元素值相同直接跳过第二个
}
k--;//逆向指针继续往前走
while (j < k && nums[k] == nums[k + 1]) {
k--;
}
}
}
}
return answer;//返回类型为vector<vector<int>>
}
};
跟学视频:
两数之和 三数之和【基础算法精讲 01】