hdu 5248(二分+贪心)

本文分享了一道 HDU 5248 的解题思路及代码实现,采用二分查找结合贪心策略的方法解决了一个关于数组调整的问题。作者最初考虑使用动态规划但最终选择二分法,并在检查函数中利用贪心思想优化了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5248

解题思路:这道题我原本的思路是动态规划,结果看到数很大,结果放弃了。然后想到二分,思路是对的,只是在check()函数时想的太复杂了,没有想到这里有贪心的结构,而采用的是动规去枚举。结果超时了。假设二分枚举到x,那么a[i]就可以尽可能地变小,最小可以小到a[i]-x,这样就可以把数列变成尽可能小的递增序列。感觉对有些题的贪心结构还是不敏感。


#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

const int maxn = 100005;
int n,A[maxn],B[maxn];

bool check(int len)
{
	for(int i = 1; i <= n; i++)
		B[i] = A[i];
	B[1] = B[1] - len;
	for(int i = 2; i <= n; i++)
	{
		if(B[i] <= B[i-1])
		{
			if(B[i-1] + 1 - B[i] <= len) B[i] = B[i-1] + 1;
			else return false;
		}
		else if(B[i] - B[i-1] > len) B[i] = B[i] - len;
		else B[i] = B[i-1] + 1;
	}
	return true;
}

int main()
{
	int t,cas = 1;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		for(int i = 1; i <= n; i++)
			scanf("%d",&A[i]);
		int l = 0,r = 1000000,mid,ans = 0;
		while(l <= r)
		{
			mid = (l + r) >> 1;
			if(check(mid) == true)
			{
				ans = mid;
				r = mid - 1;
			}
			else l = mid + 1;
		}
		printf("Case #%d:\n%d\n",cas++,ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值