反向传播数学原理

什么是反向传播(BP),有什么作用?

“正向传播求损失,反向回传误差”,在前向传播(FP)后,可获得损失函数,在损失函数基础上,利用复合函数链式求导法则,从后向前,分别对每个权重、偏置进行梯度下降,利用学习率更新权重与偏置,以获得最小损失的参数(权重、偏置)与模型。

反向传播数学原理

如下图有一个神经网络:

初始化权重与偏置如下:

w=(0.1, 0.15,0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65)

b=(0.35, 0.65)

1 向传播:

同理,计算得:

2 反向传播

BP过程(w7

w8+= 0.453383

w9+= 0.458137

w10+=0.553629

w11+=0.557448

w12+=0.653688

BP过程(w1)

FP多次迭代效果

第10资迭代结果: O=(0.662866, 0.908195)

第100资迭代结果 O=(0.073889, 0.945864)

第1000次迭代结果:O=(0.022971, 0.977675)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值