用自有数据进行大语言模型微调训练

上图为用大模型训练酒店查询问答系统后的演示

使用大模型微调技术,通过指令跟随数据进行专有领域知识微调训练大语言模型,使它适用于特定领域下游任务。

ChatGLM模型原理

ChatGLM模型引入了一种全新的自回归空格填充的任务, 例如上图: 对原始的数据 x 1 , x 2 , x 3 , x 4 , x 5 , x 6 x_1,x_2,x_3,x_4,x_5,x_6 x1​,x2​,x3​,x4​,x5​,x6​,随机 m a s k mask mask了 x 3 x_3 x3​和 x 5 , x 6 x_5,x_6 x5​,x6​,目标就是利用未 m a s k mask mask的来自回归式预测被 m a s k mask mask的信息。

ChatGLM的GLMBlock

GLMBlock是基于Transformer模型的一种变体,只有解码器。主要包含以下几个部分:

1.Layer Norm;2.Self Attention;3.GLU

微调方式:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值