Codeforces 366C 水果(dp-01背包)

本文介绍了一种将复杂问题转化为01背包问题的解决思路。通过调整数组元素使其非负,利用动态规划求解最优解。针对不同情况,采取逆序或顺序遍历确保正确更新状态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写图片描述

我是真心觉得它难的。
第一反应暴搜,2^100,算了。想了很久很久的各种设置状态的方法,都没法顺利进行状态转移。

正解是这样的:
这里写图片描述
可得:∑aj=k*∑aj ( j:[ 1,m ] );

那么,我们创造一个数组 g[ i ]=a[ i ]-k*b[ i ];
于是乎,这个问题就转化成了,挑选一种或多种水果,使得 ∑g[ i ]=0,并且使对应的 ∑ai 最大。
是不是熟悉起来了?
再用另一种语言表述:挑选若干个物品,使得其体积( g )为0,并保证其价值总和( a )最大。
好,显而易见了,裸的01背包问题。

然而,我们发现g[ i ]可能是负数,为了解决c++中万恶的下标不能为负的问题,我们将整个数组向右平移,即下标全部加上某个数 p 以保证它为正,结合本题数据规模,我的 p =10000,据杨神亲测,100也能过。

细节处理见code:

int n,k;
int v[110],w[110];//前者为a,后者为b。
int g[110];
int p=10000;
int x,y;

int f[200000];

void init()
{
    x=0;y=0;
    int s=0;
    read(n);read(k);
    for(int i=1;i<=n;++i) read(v[i]);
    for(int i=1;i<=n;++i) read(w[i]),g[i]=v[i]-w[i]*k,s+=g[i];
    x=y=s;
    for(int i=1;i<=n;++i) x=min(x,x-g[i]),y=max(y,y-g[i]);//x、y分别表示所取g[ i ]之和可能达到的最小值&最大值,用于dp时枚举的上下界。
}

void work_dp()
{
    memset(f,-1,sizeof(f));//由于我们强制要求最终体积=0,而我们并不能保证这种情况一定合法存在,所以初始状态是全都不合法。
    f[p]=0;//f[ 0 ]=0平移后的产物。
    for(int i=1;i<=n;++i)
    {
        if(g[i]>=0)//这里分类了。因为g[i]>=0时,只有倒着枚举才能保证f[j-g[i]+p]没有被上一层更新过,这时和01背包是一样的。
        {
            for(int j=y;j>=x;--j)
                if(f[j-g[i]+p]>=0) f[j+p]=max(f[j+p],f[j-g[i]+p]+v[i]);         
        }           
        else for(int j=x;j<=y;++j)//但是如果g[i]<0,那么如果仍然倒推,由于j-g[i]+p在j+p的右侧,而右侧是已更新过的值,那么就会出错,所以应该顺推。
            if(f[j-g[i]+p]>=0) f[j+p]=max(f[j+p],f[j-g[i]+p]+v[i]);             
    }//其实这里j枚举的上下界比较粗糙,严格地来说,还应满足j-g[i]+p也在[x,y]内,不过反正是影响不到结果的,就没怎么仔细改了。
    if(f[p]) printf("%d",f[p]);
    else printf("-1");
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值