五、矩阵的运算

本文概述了矩阵的加减运算、数乘的区别、矩阵与向量的乘法规则,强调了矩阵乘法的非交换性以及矩阵转置的概念,包括转置的性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、矩阵的加减:


     前提:两个矩阵必须是同形矩阵。

     矩阵加减具有交换律,矩阵矩阵相乘没有交换律。

     计算结果:元素级运算。

2、矩阵的数乘:


   计算结果:元素级运算。这里要区别与行列式的数乘。

3、矩阵与向量的乘法:


  前提:矩阵的列数等于向量的行数。

  计算方式:左列 = 右行条件下 ,前行 * 后列 对应元素乘积的和。


4、矩阵与矩阵的乘法:


  得到的新矩阵由  左行右列  决定 行与列。即:(m*n)* (n*s)  >>>> (m*s)

注意:矩阵与矩阵的乘法中没有交换律:           AB  != BA(A B 互逆除外 )
当A逆矩阵存在时时:AC = AD  >>>>>  C = D  原因:并不是消去律,而是两边同时 乘上 A的逆矩阵化简
。 


5、矩阵的转置:


理解:对角线翻转。

转置的性质:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小硕算法工程师

你的鼓励将是我创作的最大动力哈

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值