conda创建、查看、删除虚拟环境(anaconda命令集)

文章目录

一、管理conda:
(1)检查conda版本
(2)获取版本号
(3)列出所有的环境
(4)查看环境管理的全部命令帮助
(5)conda升级
(6)conda升级后释放空间
二、管理环境
(1)创建环境
(2)激活环境
(3)切换到base环境
(4)复制一个环境
(5)删除一个环境
三、管理包
(1)安装包 或 安装特定版本的包
(2)查看所有已安装包
(3)卸载包
(4)更新包
(5)搜索包
四、把环境添加到jupyter notebook
(1)查看已添加到jupyter notebook的kernel
(2)删除指定的kernel
参考

豆瓣(douban) http://pypi.douban.com/simple/
1
一、管理conda:
(1)检查conda版本
conda --version
(2)获取版本号
conda --version或 conda -V
(3)列出所有的环境
conda env list
conda list命令用于查看conda下的包,而conda env list命令可以用来查看conda创建的所有虚拟环境。
(4)查看环境管理的全部命令帮助
conda env -h
(5)conda升级
我们可以在命令行中或者anaconda prompt中执行命令进行操作。

conda update conda升级conda
conda update anaconda升级anaconda前要先升级conda
conda update --all升级所有包
(6)conda升级后释放空间
在升级完成之后,我们可以使用命令来清理一些无用的包以释放一些空间:

conda clean -p删除没有用的包
conda clean -t删除保存下来的压缩文件(.tar)
二、管理环境
(1)创建环境
conda create -n env-name [list of package]。-n env-name是设置新建环境的名字,list of package是可选项,选择要为该环境安装的包。

如果我们没有指定安装python的版本,conda会安装我们最初安装conda时所装的那个版本的python。

若创建特定python版本的包环境,需键入conda create -n env-name python=3.6

(2)激活环境
Linux,OS X:

source activate env-name
Windows:

activate env-name
小技巧:
新的开发环境会被默认安装在你conda目录下的envs文件目录下。你可以指定一个其他的路径;

(3)切换到base环境
如果要从你当前工作环境的路径切换到系统根目录时,键入:

Linux,OS X:

conda source deactivate
Windows:

conda deactivate
(4)复制一个环境
通过克隆来复制一个环境。这儿将通过克隆snowfllakes来创建一个称为flowers的副本。

conda create -n flowers --clone snowflakes
通过conda env list来检查目前拥有的环境
(5)删除一个环境
如果你不想要这个名为flowers的环境,就按照如下方法移除该环境:

conda env remove -n flowers
三、管理包
(1)安装包 或 安装特定版本的包
conda install package-name
conda install package-name==version
(2)查看所有已安装包
conda list
(3)卸载包
conda remove package-name
(4)更新包
更新一个包

conda update package-name
更新所有包

conda update --all
(5)搜索包
conda search search-term,可以模糊搜索
四、把环境添加到jupyter notebook
首先通过activate进入想要添加的环境中,然后安装ipykernel,接下来就可以进行添加了。

pip install ipykernel
python -m ipykernel install --name Python36Python36可以取与环境名不一样的名字,但方便起见建议统一
(1)查看已添加到jupyter notebook的kernel
我们可以使用jupyter kernelspec list来查看已添加到jupyter notebook的kernel。
显示如下:

PS C:\Users\25387> jupyter kernelspec list
Available kernels:
  python3    D:\Anaconda\anaconda\share\jupyter\kernels\python3
1
2
3
(2)删除指定的kernel
若想删除某个指定的kernel,可以使用命令jupyter kernelspec remove kernel_name来完成。

由于python是不向后兼容的,分开环境可以避免语法版本不一引起的错误,同时这也可以避免工具包安装与调用的混乱。
参考
anaconda笔记:conda的各种命令行操作
anaconda常用命令行指令
Anaconda常用命令大全
                        
原文链接

### 如何使用 Conda 创建 Python 3.9 的虚拟环境 可以按照以下方法创建一个基于 Python 3.9 的虚拟环境: #### 使用 `-n` 参数指定环境名称 通过 `conda create -n env_name python=3.9` 命令,其中 `env_name` 是自定义的虚拟环境名称。此命令会自动下载并安装 Python 3.9 及其依赖项到指定环境中[^1]。 ```bash conda create -n my_py39_env python=3.9 ``` 上述命令中的 `my_py39_env` 即为新创建虚拟环境名称,可以根据实际需求更改该名称。 --- #### 添加国内镜像源加速安装过程 为了提高软件包下载速度,建议配置国内镜像源(如清华大学开源软件镜像站)。可以通过以下命令完成设置[^4]: ```bash conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ ``` 随后验证是否成功添加镜像源: ```bash conda config --show-sources ``` 如果显示如下内容,则表示已成功添加镜像源: ```yaml channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ - defaults ``` --- #### 激活新建的虚拟环境 创建完成后,需激活该虚拟环境才能正常使用。运行以下命令即可激活名为 `my_py39_env` 的环境: ```bash conda activate my_py39_env ``` 此时终端提示符前缀应变为 `(my_py39_env)`,表明当前处于目标虚拟环境中。 --- #### 安装额外的依赖库 进入虚拟环境后,可利用 `conda install package_name` 或者 `pip install package_name` 来安装所需的其他第三方库[^3]。例如: ```bash conda install numpy pandas matplotlib ``` 或者借助 pip 工具实现相同功能: ```bash pip install requests flask ``` --- #### 删除不再使用的虚拟环境 当某个虚拟环境不再需要时,可通过以下命令删除它及其关联文件夹: ```bash conda remove -n my_py39_env --all ``` 这一步骤有助于释放磁盘空间以及保持工作区整洁有序。 --- ### 总结 以上介绍了如何运用 Conda 构建支持 Python 3.9 的独立开发测试平台,并提供了优化网络性能的方法——即引入本地化存储仓库作为补充资源渠道;同时还涵盖了基本操作流程诸如启动、扩展组件加载以及最终清理销毁等内容[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值