【Block总结】EfficientViT中的多尺度线性注意力模块即插即用

论文信息

  • 标题: EfficientViT: Multi-Scale Linear Attention for High-Resolution Dense Prediction
  • 作者: Han Cai, Junyan Li, Muyan Hu, Chuang Gan, Song Han(MIT/浙江大学/清华大学/MIT-IBM Watson AI Lab)[3][7]
  • GitHub: mit-han-lab/efficientvit
  • 研究背景: 高分辨率密集预测(如语义分割、超分辨率)在自动驾驶、计算摄影等领域应用广泛,但现有模型存在计算成本高、硬件部署效率低的问题[3][7]。
    在这里插入图片描述

核心创新点

  1. 多尺度线性注意力(Multi-Scale Linear Attention)

    • 替代传统Softmax注意力,通过ReLU线性注意力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值