- 博客(8)
- 收藏
- 关注
原创 深度模型部署上云——Apache恩仇录
基础环境:ubuntu 16.04 + apache 2.4.18 详细信息请参照同系列的环境配置教程:https://blog.csdn.net/hikkilover/article/details/80899133 本篇教程接续上篇《深度模型部署上云——Apache初步》(https://blog.csdn.net/hikkilover/article/details/80901659),散...
2018-09-02 10:40:53
377
原创 【一顿操作】用Grub2命令行引导启动Windows10
PC型号: Lenovo XiaoXin Air 13 Pro-13IKB (双系统)Windows版本: Windows10 教育版Ubuntu版本: Ubuntu Desktop 16.04 对于Windows和Linux双系统的用户,你可能会陷入这样一种窘境:在你的Grub2引导中,没有Windows的选项,这时,一般的选择是先启动Linux系统,修改Grub2的设置后再重启。 实...
2018-09-01 21:21:09
46205
12
原创 【一顿操作】拒绝重装系统,将 RAID 改为 AHCI
PC型号: Lenovo XiaoXin Air 13 Pro-13IKB Windows版本: Windows10 教育版Ubuntu版本: Ubuntu Desktop 16.04今天给电脑装双系统,发现ubuntu的安装程序检测不到电脑的硬盘分区(正常情况下,在硬盘分区的页面总可以看到所有的分区情况,而我在安装时,该页的表单完全是空白。) 问题的症结在于硬盘 MODE 设置不满...
2018-09-01 17:26:58
32321
23
原创 Ubuntu16.04配置openCV+Caffe(with CUDA8.0)
配环境,继续配环境,这次我们是要在ubuntu16.04下配置opencv+caffe。整整鼓捣了一天,走了很多弯路,把我摸索出的基本配置方法和踩到的坑给大家讲一下。 直接百度“ubuntu caffe”你会发现一堆前人写(抄)的配置说明,很多说明罗列的内容很丰富,看得懂看不懂的操作一大堆,你也不知道为什么,这样的说明很大程度上是在领着读者走弯路,所以,在装软件配环境之前,我总是习惯翻一翻官网,...
2018-07-10 14:34:27
534
原创 深度模型部署上云——Apache初步
这是一个系列教程的第二篇(https://www.pyimagesearch.com/2018/02/05/deep-learning-production-keras-redis-flask-apache/) 实验基础环境:ubuntu 16.04 + apache 2.4.18 详细环境信息请参照同系列的环境配置教程:https://blog.csdn.net/hikkilover/ar...
2018-07-03 17:24:30
511
原创 Ubuntu Tips apt与gcc
在之前的工作中,有大量的环境配置的工作,涉及到了linux和ubuntu的一些边边角角的知识,在这里列一下。关于aptapt是ubuntu系统内置的软件管理组件(别的Linux系统用的不是它),非desktop版本又不想通过编译安装软件的话,就要靠它了,标准格式是:(sudo) apt-get install xxx有时运行这条命令它会告诉你,想要安装的软件它搜索不到,这时...
2018-07-03 15:53:30
348
原创 深度模型部署上云——环境配置
前阵子参考一份外文的教程(https://www.pyimagesearch.com/2018/02/05/deep-learning-production-keras-redis-flask-apache/)在云端部署了一项深度模型web服务,其中反反复复最繁琐的就是环境配置(中间出了一点波折,还曾经在在winServer上配了一次),下面捡其中重要的记录一下。环境:ubuntu 16....
2018-07-03 15:38:45
942
原创 用Numpy与PIL实现基本的图像处理(一)
本系列旨在用Numpy和PIL实现一些基本的图像处理功能,后者只用来做文件的读入与保存,涉及到的所有处理均用Numpy实现,最后用Matplotlib实现可视化,下文涉及的各种算法算不上简洁,更多地只是提供原理上的参考,若读者发现某些环节存在错误,还请回复指正。 上面是我们的实验用图,原图大小300*400,原文件格式JPG。Part 1 图像文件的读取与保存 读取和...
2018-03-12 16:06:28
10746
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人