
机器学习
文章平均质量分 94
# 机器学习1
roman_日积跬步-终至千里
做三四月的事,在八九月自有答案。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【学习线路】机器学习线路概述与内容关键点说明
通过数据驱动让计算机自动学习规律,无需显式编程(Arthur Samuel)。核心公式:程序通过经验(E)提升任务(T)性能(P)(Tom Mitchell)。原创 2025-07-03 23:45:27 · 1194 阅读 · 0 评论 -
【机器学习】算法调参的两种方式:网格搜索(枚举)、随机搜索
【机器学习】算法调参的两种方式:网格搜索(枚举)、随机搜索原创 2025-08-05 22:51:15 · 762 阅读 · 0 评论 -
【机器学习】(算法优化二)提升算法之:AdaBoost与随机梯度
【机器学习】(算法优化二)提升算法之:AdaBoost与随机梯度原创 2025-08-04 22:39:32 · 669 阅读 · 0 评论 -
【机器学习】(算法优化一)集成学习之:装袋算法(Bagging):装袋决策树、随机森林、极端随机树
【机器学习】(算法优化)集成学习之:装袋算法(Bagging):装袋决策树、随机森林、极端随机树原创 2025-08-04 20:25:51 · 1181 阅读 · 0 评论 -
【机器学习】线性回归算法详解:线性回归、岭回归、Lasso回归与Elastic Net
【机器学习】回归算法详解:线性回归、岭回归、Lasso回归与Elastic Net原创 2025-08-03 23:45:54 · 815 阅读 · 0 评论 -
【机器学习】非线性分类算法详解(下):决策树(最佳分裂特征选择的艺术)与支持向量机(最大间隔和核技巧)
【机器学习】非线性分类算法详解(下):决策树(最佳分裂特征选择的艺术)与支持向量机(最大间隔和核技巧)原创 2025-08-02 22:21:49 · 801 阅读 · 0 评论 -
【机器学习】非线性分类算法(上):KNN(基于距离相似度)与朴素(特征独立)贝叶斯(基于概率统计)
【机器学习】四大非线性分类算法(上):KNN(基于距离相似度)与朴素(特征独立)贝叶斯(基于概率统计)原创 2025-08-02 19:50:02 · 971 阅读 · 0 评论 -
【机器学习】两大线性分类算法:逻辑回归与线性判别分析:找到分界线的艺术
【机器学习】线性分类算法:逻辑回归、线性判别分析算法:找到分界线的艺术原创 2025-08-02 18:37:30 · 715 阅读 · 0 评论 -
【机器学习】“回归“算法模型的三个评估指标:MAE(衡量预测准确性)、MSE(放大大误差)、R²(说明模型解释能力)
【机器学习】"回归"算法模型的三个评估指标:MAE(衡量预测准确性)、MSE(放大大误差)、R²(说明模型解释能力)原创 2025-08-02 11:04:50 · 1049 阅读 · 0 评论 -
【机器学习11】“分类算法“评估矩阵:从对数损失、AUC和ROC、混淆矩阵与分类报告等角度来评估算法
【机器学习算法】分类算法评估方法矩阵:从对数损失、AUC和ROC、混淆矩阵与分类报告等角度来评估算法原创 2025-07-30 23:20:03 · 688 阅读 · 0 评论 -
【机器学习【9】】评估算法:数据集划分与算法泛化能力评估
【机器学习【9】】评估算法:数据集划分与算法泛化能力评估原创 2025-07-20 15:39:05 · 1169 阅读 · 0 评论 -
【机器学习实战【8】】机器学习特征选定与评估
本文介绍了四种主流特征选择方法及其应用场景:1)单变量特征选择(SelectKBest)通过统计检验筛选与目标最相关的特征;2)递归特征消除(RFE)通过迭代训练模型逐步剔除不重要特征;3)主成分分析(PCA)通过线性变换降维保留最大方差方向;4)特征重要性基于树模型或置换法评估特征贡献。文章详细阐述了卡方检验和F检验的原理差异,并通过代码示例展示了SelectKBest和RFE的具体实现流程,强调特征工程对机器学习效果的决定性作用。原创 2025-07-17 18:04:17 · 996 阅读 · 0 评论 -
【机器学习【7】】数据预处理:数据准备、数据转换、数据输出
【机器学习【7】】数据预处理:数据准备、数据转换、数据输出原创 2025-07-17 14:24:37 · 1087 阅读 · 0 评论 -
【机器学习【6】】数据理解:数据导入、数据审查与数据可视化方法论
本文系统介绍了机器学习数据准备的关键技术和方法。首先详细对比了三种数据导入方式,指出Pandas在类型推断、缺失值处理等方面的优势。然后提出"六维数据画像"方法,从数据结构、质量、目标变量等维度进行全面分析。最后通过五种可视化技术(直方图、箱线图等)揭示数据分布特征和异常模式,为后续算法选择提供依据。文章强调数据理解应遵循"从宏观到微观"的认知规律,并展示了如何将数据特征映射到合适的算法选择,构建了完整的数据分析决策链条。原创 2025-07-16 22:35:31 · 1330 阅读 · 0 评论 -
【机器学习基础【5】】Python数据科学三件套:从数据创建到处理再到可视化实战
【机器学习基础【5】】Python数据科学三件套:从数据创建到处理再到可视化实战原创 2025-07-16 00:07:43 · 414 阅读 · 0 评论 -
【机器学习3】机器学习(鸢尾花分类)项目核心流程与企业实践差异分析
【机器学习3】机器学习(鸢尾花分类)项目核心流程与企业实践差异分析原创 2025-07-04 23:13:46 · 621 阅读 · 0 评论 -
【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈
【机器学习基础1】什么是机器学习、预测模型解决问题的步骤、机器学习的Python生态圈原创 2024-04-29 22:13:09 · 939 阅读 · 0 评论 -
【机器学习基础2】第一个机器学习项目-鸢尾花分类:生成模型、评出最优模型、验证模型
【机器学习基础1】第一个机器学习项目--生成模型、评出最优模型,最后验证模型原创 2024-04-29 21:27:45 · 1239 阅读 · 0 评论