斐波那契数列加强版 快速矩阵幂

题目描述
我们知道斐波那契数列的公式是:f ( n ) = f ( n − 1 ) + f ( n − 2 ) f(n) = f(n-1) + f(n-2)f(n)=f(n−1)+f(n−2)
其中f ( 1 ) = 1 f(1) = 1f(1)=1,f ( 2 ) = 1 f(2) = 1f(2)=1。

输入格式
输入一个正整数n nn( n ≤ 10 9 ) (n \le 10^9)(n≤10 
9
 )。

输出格式
输出f ( n ) m o d    ( 10 9 + 7 ) f(n) \mod (10^9 + 7)f(n)mod(10 
9
 +7)的值。

无法开1e9的一维数组!!使用矩阵幂进行计算。

代码:

#include <iostream>
#include <vector>
#include <map>
#include <algorithm>
#include <cstring>
#define MX 10005
using namespace std;
typedef vector<long long> vec;
typedef vector<vec> mat; 
int n;
//用二维vector表示矩阵
const int mod = 1e9+7;
//计算矩阵A*矩阵B
 mat mul(mat& a,mat& b)
 {
     mat c(a.size(),vec(b[0].size()));//矩阵a的行数,矩阵b的列数 
     for(int i = 0;i < a.size();i++)
     {
         for(int k = 0;k < b.size();k++)
         {
             for(int j = 0;j < b[0].size();j++)
             {
                 c[i][j] = (c[i][j] + a[i][k] * b[k][j]%mod)%mod;
             }
         }
     }
     return c;
 }
//计算a*b
mat pow(mat a,long long b)
{
    mat c(a.size(),vec(a.size()));
    for(int i = 0;i < a.size();i++)
    {
        c[i][i] = 1;
    }
    while(b > 0)
    {
        if(b & 1) c = mul(c,a);
        a = mul(a,a);
        b = b>>1;
     } 
     return c;
 } 
int main() {
    cin>>n;
    if(n == 0) cout<<0<<endl;
    if(n == 1 || n == 2) cout<<1<<endl;
    else{
        mat a(2,vec(2));
        a[0][0] = 1;
        a[0][1] = 1;
        a[1][0] = 1;
        a[1][1] = 0;
        mat res = pow(a,n-1);
        cout<<res[0][0] % mod<<endl;
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值