Day16
区间DP套路模板直接做就好,注意时间复杂度即可
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 35;
int t, n, m;
int w[N], f[N][N], g[N][N];
void dfs(int l, int r) // 递归输出前序遍历
{
if (l > r) return ;
int k = g[l][r];
cout << k << " ";
dfs(l, k - 1), dfs(k + 1, r);
}
int main(void)
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
for (int i = 1; i <= n; i++) cin >> w[i];
for (int len = 1; len <= n; len++) { // 枚举长度
for (int l = 1; l + len - 1 <= n; l++) { // 枚举左端点
int r = l + len - 1;
if (len == 1) f[l][r] = w[l], g[l][r] = l; // 如果长度为一,那么分值为它本身
else {
for (int k = l; k <= r; k++) { // 枚举区间[l, r]
int left = k == l? 1 : f[l][k - 1];
int right = k == r? 1 : f[k + 1][r];
int score = left * right + w[k];
if (score > f[l][r])
{
f[l][r] = score;
g[l][r] = k;
}
}
}
}
}
cout << f[1][n] << endl ;
dfs(1, n);
return 0;
}
第一次在题目中用到高精度,也是我第一次看到高精度的使用和实际的写法,
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 55, M = 35, INF = 1e9;
int n;
int w[N];
LL f[N][N][M];
void add(LL a[], LL b[]) // 高精度加法
{
static LL c[M];
memset(c, 0, sizeof c);
for (int i = 0, t = 0; i < M; i ++ )
{
t += a[i] + b[i];
c[i] = t % 10;
t /= 10;
}
memcpy(a, c, sizeof c);
}
void mul(LL a[], LL b) // 高精度乘法
{
static LL c[M];
memset(c, 0, sizeof c);
LL t = 0;
for (int i = 0; i < M; i ++ )
{
t += a[i] * b;
c[i] = t % 10;
t /= 10;
}
memcpy(a, c, sizeof c);
}
int cmp(LL a[], LL b[]) // 高精度比较
{
for (int i = M - 1; i >= 0; i -- )
if (a[i] > b[i]) return 1;
else if (a[i] < b[i]) return -1;
return 0;
}
void print(LL a[]) // 高精度输出
{
int k = M - 1;
while (k && !a[k]) k -- ;
while (k >= 0) cout << a[k -- ];
cout << endl;
}
int main()
{
cin >> n;
for (int i = 1; i <= n; i ++ ) cin >> w[i];
LL temp[M];
for (int len = 3; len <= n; len ++ )
for (int l = 1; l + len - 1 <= n; l ++ )
{
int r = l + len - 1;
f[l][r][M - 1] = 1;
for (int k = l + 1; k < r; k ++ )
{
memset(temp, 0, sizeof temp);
temp[0] = w[l];
mul(temp, w[k]);
mul(temp, w[r]);
add(temp, f[l][k]);
add(temp, f[k][r]);
if (cmp(f[l][r], temp) > 0)
memcpy(f[l][r], temp, sizeof temp);
}
}
print(f[1][n]);
return 0;
}
树形DP
数的最长路径就是数的直径,在树上任取一个点,找到距离这个点的最远的点 u u u ,在从 u u u 找到距离 u u u 最远的点 v v v 那么 u u u 到 v v v 就是树的一条直径,树的直径不唯一。
#include<bits/stdc++.h>
#define x first
#define y second
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
const int N = 20010;
int t, n, m, ans;
int e[N], ne[N], w[N], h[N], idx;
void add(int a, int b, int c)
{
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
int dfs(int u, int father)
{
int dist = 0; // 记录当前点往下的最大距离
int d1 = 0, d2 = 0; // d1记录最大距离,d2记录次大距离
for (int i = h[u]; i != -1; i = ne[i]) {
int j = e[i];
if (j == father) continue; // 如果搜到父节点,不能往回搜,直接跳过
int d = dfs(j, u) + w[i]; // 递归求子树的最大距离
dist = max(dist, d);
if (d >= d1) d2 = d1, d1 = d; // 更新最大次大距离
else if (d > d2) d2 = d;
}
ans = max(ans, d1 + d2); // 更新答案
return dist;
}
int main(void)
{
ios::sync_with_stdio(false);
cin.tie(0);
cin >> n;
memset(h, -1, sizeof h);
for (int i = 0; i < n - 1; i++) {
int a, b, c;
cin >> a >> b >> c;
add(a, b, c), add(b, a, c);
}
dfs(1, -1);
cout << ans << endl ;
return 0;
}