大家好,我是Feng,欢迎和我一起探索使用AI相关技术。
向大家报告一下,近期一直在阅读和学习AI相关的知识和资料。探索打造企业AI Agent的整个技术栈。目的是站在大模型巨人的肩膀上探索如何建立细分领域业务系统的开发模式和技术链条。网上的资料太零散,而且AI相关的术语、专有名词,即使对于我这个20多年的老程序猿来说,也是晦涩难懂、不知方向。因此我才想着把摸坑的过程记录并分享出来,后续逐步形成系统的知识库。一来可以总结出一个开发框架或模式,降低我们技术人员为企业提供相关解决方案时的成本,可以多挣些钱。二来也可能为加快小微企业的智能化进程、降低智能化建设成本贡献一点点力量。
欢迎添加我的微信:huangjf_chn 保持沟通,互助成长。
本篇介绍的是为通用大模型增加专业业务能力的重要技术:向量数据库

01
向量数据库与智能系统的协同进化
在这个数字化、智能化高速发展的时代,企业追求的不再只是简单的数据存储和查询功能(我们开发的企业应用,绝大多数都是数据的增、删、改查 - CRUD),而是智能化的数据解析能力,以便更快地做出决策,提供个性化服务,加强安全防护。为了满足这些需求,向量数据库应运而生,成为支撑企业自有智能系统发展的重要技术。
想象一下,如果我们的大脑只能记住事物的名称而不是它们的特性,那生活将会是多么的困难。传统数据库在处理人类、物品或者事件的数字化信息时,常常像这样,只能记念“名称”,即数据的精确值。而在现实世界中,我们往往需要根据特征来找到相似的事物,比如在一幅画中找到相似的颜色块,或在一首歌曲里找出类似的旋律。
向量数据库就好比是给了数据以“特征”,它不仅知道每个物品的名称,还能理解它们的特性和它们之间的相似度。
向量数据库存储的是向量数据,这些数据是对物品特征的数值表示,它们能够捕捉到物品的本质属性。在智能系统中,这些向量通常来源于机器学习模型,模型会将图片、语音、文字等信息转换成向量形式,而向量数据库正是管理这些向量的专家。它通过快速比较这些向量之间的距离或相似度,实现了迅速而准确的搜索,这对于推荐系统、自动驾驶汽车的视觉系统、语音识别助手等智能应用至关重要。
研究表明,向量数据的相似性搜索是机器学习和数据科学中的核心问题之一。
-
在《Similarity Search: The Metric Space Approach》一书中,Pavel Zezula 等作者详细讨论了相似性搜索的理论基础和实用技术,这正是向量数据库所擅长的。
-
在《Deep Learning》一书中,Ian Goodfellow 和同事们解释了深度学习模型如何将现实世界的复杂信息转化为向量,这些向量正是向量数据库中管理的数据类型。
总的来说,向量数据库所提供的高效相似度搜索能力,在构筑企业自有智能系统时提供了前所未有的可能性。通过深入了解向量数据库的这些独特功能,我们可以预见到一个更加智能化、个性化的未来。在接下来的篇章中,我们会进一步探索向量数据库的内在工作机制,以及它们如何转化为企业增长和竞争力的关键因素。
02
向量数据库基本概念、特点、作用和优势
要完全理解向量数据库,我们需要从它的基础概念说起。向量数据库并不是一个抽象难懂的概念,它其实很接近我们日常生活中的体验。就像我们在购物网站上搜索类似款式的衣服,或者在音乐应用中找到与我们喜爱的歌曲相似风格的歌单一样,向量数据库也是通过寻找数据之间的“相似性”来工作的。
2.1 什么是向量数据库?
简单来说,向量数据库是一种专门设计来存储和处理向量形式数据的数据库系统。
向量在很多不同的领域都有应用,例如地理信息系统、机器学习、计算机图形学等。在这些领域中,向量数据是一种基本的数据类型,能够表示空间中的点、线、面等对象。
向量代表了物品或实体的特征,可以是高维数据点,如一张图像、一段音频或一篇文本的数学表达。在向量数据库中,每个数据点都是一个有序的数值列表,我们可以通过这些数值来量化比较数据点之间的相似程度。

在具体使用中,人们常常通过SQL或其它查询语言向向量数据库查询数据。向量数据库能够以高效且准确的方式返回结果,大大提高了向量数据处理的能力。
2.2 向量数据库与传统数据库的区别
传统数据库,比如关系型数据库,擅长处理结构化数据,如存储在表格中的文本和数字等。它们通过预定义的查询语言(如SQL)来进行精确匹配或条件搜索。这种方式在处理银行交易、客户信息等数据时效果显著,但在处理复杂的模式识别问题时就显得力不从心了。
相比之下,向量数据库不是通过匹配确切的数据值,而是通过一种称为“相似度搜索”的方法来工作。它们可以快速找到与查询向量最相似的数据点,即使这些数据点在数值上并不完全相同。例如,在一个向量数据库中,即使没有完全相同的照片,我们仍然可以找到风格相似的图片。这种能力使得向量数据库在图像和语音识别、自然语言处理以及其他需要高效处理大量高维数据的领域中变得非常有价值。
通过这种方式,向量数据库打破了传统数据库的局限,为处理和分析大规模、复杂的数据提供了更为灵活和强大的解决方案。
语义向量存储是一种将数据以向量形式存储的方法,其中数据被编码为具有语义信息的向量。这种方法常见于自然语言处理(NLP)和机器学习领域,尤其是在处理诸如文本、图像和语音数据时。
传统的数据存储通常基于原始数据的表征,例如单词的字符串表征,图像的像素表征等。但这种表征方式难以捕获数据之间的复杂关联和内在的语义信息。相比之下,语义向量存储能够保留这些深层次信息,使得相似的数据拥有相近的向量代表,从而使得距离在向量空间中具有语义意义。
语义向量一般通过深度学习模型,例如词嵌入(Word Embedding)、图像嵌入(Image embedding)等得到。这些模型通过大量的数据训练,学习得到每个数据点(如一个词或一张图像)在多维空间中的位置,即该数据点的向量表征。
例如,对于文本数据,我们可以使用Word2Vec、GloVe等词嵌入技术将每个词映射为一个高维向量。这些向量捕获了词与词之间的关联,例如语义相似性、句法相似性等。
存储的时候,我们存储这些向量而不再存储原始的词。查询的时候,我们可以通过计算向量之间的距离(比如余弦相似性)来找到语义上相近的词。这对许多任务,如文本分类、语义搜索、情感分析等都非常有用。
2.3 向量数据库的特点
-
高效的空间查询:向量数据库借助空间索引技术,可以在大规模的数据集中进行高效的空间查询。例如,找出一定范围内的所有点,或者找出和给定点最近的线。
-
支持复杂的空间操作:向量数据库支持许多复杂的空间操作,如空间聚合、空间连接、空间分离等。这对于地理信息系统和机器学习等应用非常有用。
-
丰富的数据类型和操作:向量数据库支持多种向量数据类型(如点、线、多边形等)和多种空间操作(如距离计算、方向判定、空间关系判定等)。
-
大规模数据支持:向量数据库通常被设计为支持大规模的数据处理。它利用并行计算和分布式存储技术,可以处理千万级甚至亿级的数据。
2.4 向量数据库的作用
-
为机器学习算法提供效率数据存储和查询:在大多数的机器学习算