为什么需要复杂度分析?
如果想要知道一个程序运行需要花费多少时间,直接运行测试不是更简单更准确吗?何必去花精力推算复杂度!首先,这个想法没问题,确实可以直接跑出来,但这属于马后炮,无法提前预估算法的时间复杂度,而且也非常受限:
1、测试结果在不同处理器上运行的结果会有很大波动
2、即使在同一环境下运行,不同数据也会导致结果有很大波动
所以需要一个不用具体测试就能评估程序执行效率的方法,也就是时间、空间复杂度分析方法。
大O复杂度表示法
大O表示法是一种用来描述算法运行时间(也称算法执行效率)的一种方法,它表示算法的运行时间随着输入规模的增加而增加的速度。
#include <bits/stdc++.h>
using namespace std;
int a[100], n;
int main() {
//输入
cin >> n;
for (int i = 0; i < n; i++)
cin >> a[i];
//计算
a[n] = a[0] + a[n - 1];
//输出
for (int i = 0; i <= n; i++)
cout << a[i];
return 0;
}
如果我们假设计算机每执行一条代码需要花费1个单位的时间t,以上代码中输入执行了1+n条指令,花费了1+n个t,同理计算花费了1个t,输出花费了n+1个t,故总花费为(2*n+3)*t的时间。
for (int i = 0; i < n; i++)
for (int j = 0; j < n; i++)
add+=i*5+j;
同理。可以分析上面的代码总花费为(n*n)*t的时间。
通过分析,我们可以得到一个规律:所有代码的总运行时间与每行代码的执行次数成正比,比例就是我们可以不清楚的单位时间t。
可以抽象