【题目来源】
https://www.luogu.com.cn/problem/P7071
【题目描述】
一般来说,一个正整数可以拆分成若干个正整数的和。例如,1=1,10=1+2+3+4 等。对于正整数 n 的一种特定拆分,我们称它为“优秀的",当且仅当在这种拆分下,n 被分解为了若干个不同的 2 的正整数次幂。注意,一个数 x 能被表示成 2 的正整数次幂,当且仅当 x 能通过正整数个 2 相乘在一起得到。
例如,10=8+2=2^3+2^1 是一个优秀的拆分。但是,7=4+2+1=2+2^1+2^0 就不是一个优秀的拆分,因为 1 不是 2 的正整数次幂。现在,给定正整数 n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。
【输入格式】
输入文件只有一行,一个正整数 n,代表需要判断的数。
【输出格式】
如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。若不存在优秀的拆分,输出“-1”(不包含双引号)。
【输入输出样例】
in:6
out:4 2
in:7
out:-1
【数据范围与提示】
对于 20% 的数据,n≤10
对于另外 20% 的数据,保证 n 为奇数。
对于另外 20% 的数据,保证 n 为 2 的正整数次幂。
对于 80% 的数据,n≤1024
对于 100% 的数据,1≤n≤10^7
【算法分析】
● 本题是判断一个十进制正整数能否分解为若干个不同的 2 的正整数次幂和的问题,本质上就是一个进制转换问题。本题给出的数据最大为 10^7,对应的二进制数为 100110001001011010000000(总共 24 位,最高位贡献为 2^23)。
● 命令 bitset<24> a(x); 的作用是将 x 转换为 24 位的二进制数,可通过 a[i] 访问第 i 位(返回 bool 类型)。若 x 超过 24 位,高位将被截断。例如,bitset<4>(5) 存储为 0101。
【算法代码一:位运算】
#include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin>>n;
if(n & 1) {
cout<<-1;
return 0;
}
for(int i=23; i>=1; i--) {
if(n>>i & 1) cout<<(1<<i)<<" ";
}
return 0;
}
/*
in:6
out:4 2
*/
【算法代码二:bitset】
#include<bits/stdc++.h>
using namespace std;
int main() {
int n;
cin>>n;
bitset<24> a(n);
if(a[0]==1) {
cout<<-1;
return 0;
}
for(int i=23; i>=1; i--) {
if(a[i]) cout<<(1<<i)<<" ";
}
return 0;
}
/*
in:6
out:4 2
*/
【算法代码三:模拟法】
#include<bits/stdc++.h>
using namespace std;
int main() {
int n;
cin>>n;
if(n%2==1) cout<<-1;
else {
while(n>0) {
int p=1;
while(n>=p) p*=2;
cout<<p/2<<" ";
n-=p/2;
}
}
return 0;
}
/*
in:6
out:4 2
*/
【参考文献】
https://blog.csdn.net/kittyover/article/details/109625249
https://www.cnblogs.com/tflsnoi/p/13941406.html