洛谷 P7071:[CSP-J2020] 优秀的拆分 ← 进制转换

该博客讨论了一个算法问题,即判断一个正整数是否能被拆分为不同的2的正整数次幂。通过分析十进制和二进制之间的关系,确定是否存在不包含2的0次幂的拆分方案。如果存在,从大到小输出这些次幂;否则,输出-1。提供的C++代码实现检查n的二进制表示,如果最低位为1,则表明存在2的0次幂,输出-1,否则通过右移位运算找到所有为1的二进制位并输出对应的2的次幂。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目来源】
https://www.luogu.com.cn/problem/P7071

【题目描述】
一般来说,一个正整数可以拆分成若干个正整数的和。例如,1=1,10=1+2+3+4 等。对于正整数 n 的一种特定拆分,我们称它为“优秀的",当且仅当在这种拆分下,n 被分解为了若干个
不同的 2 的正整数次幂。注意,一个数 x 能被表示成 2 的正整数次幂,当且仅当 x 能通过正整数个 2 相乘在一起得到。
例如,10=8+2=2^3+2^1 是一个优秀的拆分。但是,7=4+2+1=2+2^1+2^0 就不是一个优秀的拆分,因为 1 不是 2 的正整数次幂。现在,给定正整数 n,你需要判断这个数的所有拆分中,是否存在优秀的拆分。若存在,请你给出具体的拆分方案。

【输入格式】
输入文件只有一行,一个正整数 n,代表需要判断的数。

【输出格式】
如果这个数的所有拆分中,存在优秀的拆分。那么,你需要从大到小输出这个拆分中的每一个数,相邻两个数之间用一个空格隔开。可以证明,在规定了拆分数字的顺序后,该拆分方案是唯一的。若不存在优秀的拆分,输出“-1”(不包含双引号)。

【输入输出样例】
in:6
out:4 2

in:7
out:-1

【数据范围与提示】
对于 20% 的数据,n≤10
对于另外 20% 的数据,保证 n 为奇数。
对于另外 20% 的数据,保证 n 为 2 的正整数次幂。
对于 80% 的数据,n≤1024
对于 100% 的数据,1≤n≤
10^7

【算法分析】
● 本题是判断一个十进制正整数能否分解为若干个
不同的 2 的正整数次幂和的问题,本质上就是一个进制转换问题。本题给出的数据最大为 10^7,对应的二进制数为 100110001001011010000000(总共 24 位,最高位贡献为 2^23)。
命令 bitset<24> a(x); 的作用是将 x 转换为 24 位的二进制数,可通过 a[i] 访问第 i 位(返回 bool 类型)。若 x 超过 24 位,高位将被截断。例如,bitset<4>(5) 存储为 0101。

【算法代码一:
位运算

#include <bits/stdc++.h>
using namespace std;

int main() {
    int n;
    cin>>n;
    if(n & 1) {
        cout<<-1;
        return 0;
    }

    for(int i=23; i>=1; i--) {
        if(n>>i & 1) cout<<(1<<i)<<" ";
    }

    return 0;
}

/*
in:6
out:4 2
*/


【算法代码二:bitset

#include<bits/stdc++.h>
using namespace std;

int main() {
    int n;
    cin>>n;
    bitset<24> a(n);

    if(a[0]==1) {
        cout<<-1;
        return 0;
    }
    for(int i=23; i>=1; i--) {
        if(a[i]) cout<<(1<<i)<<" ";
    }

    return 0;
}

/*
in:6
out:4 2
*/


【算法代码三:模拟法

#include<bits/stdc++.h>
using namespace std;

int main() {
    int n;
    cin>>n;
    if(n%2==1) cout<<-1;
    else {
        while(n>0) {
            int p=1;
            while(n>=p) p*=2;
            cout<<p/2<<" ";
            n-=p/2;
        }
    }
    return 0;
}

/*
in:6
out:4 2
*/






【参考文献】
https://blog.csdn.net/kittyover/article/details/109625249
https://www.cnblogs.com/tflsnoi/p/13941406.html
 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值