Stable Diffusion 教程:SD 基础模板及常用节点介绍

Stable Diffusion 教程:SD 基础模板及常用节点介绍

一、基础模板

在 Stable Diffusion 中,基础模板是构建复杂节点网络的起点。以下是一个简单基础模板的构建步骤:

  • 新增 Blend 节点 :首先新增一个 Blend 节点,然后把右边的 Opacity 改成 0。
  • 添加 Uniform Color 节点 :再建一个 Uniform Color 节点,并将其与 Blend 节点链接起来,这便是最基础的一个节点组合。
  • 连接 AO 节点 :接着再连一个 AO 节点。
  • 优化线条显示 :使用 Alt+ 鼠标左键,能让线更好看。
  • 新建输出节点 :新建输出节点,并将 Usage 改成 any。
  • 合并通道 :然后合并通道 RGBA marge,其中 R 代表金属度,G 代表粗糙度,B 代表 AO,A 代表高度图,这便是基础模板的构建。
二、基本界面及常用节点
  • 基本界面 :Stable Diffusion 的界面包括左边的操作面板和材质面板,中上部分是节点连接区域,中下部分是展示框,右侧是调参面板。
  • 输出节点 :输出节点用于将生成的结果输出展示,可以设置输出的格式、分辨率等参数。
  • 混合节点(Blend) :类似于 Photoshop 中的混合模式,可以将多个输入图像按照一定的规则进行混合。还可以做到减法操作,通过调整参数实现不同的混合效果。
  • 浮雕节点(Bevel) :可以类比于 Photoshop 的浮雕效果,通过调整 Distance 改变厚度,调节 Smooth 改变硬度,从而实现不同的浮雕效果。
  • 形状节点(Shape) :在 2D VIEW 窗口按下空格就能看到四方连续的效果,可以在右边的 Tilling 选项增加重复次数,用于创建各种规则的形状图案。
  • 模糊节点(Blur) :和 Photoshop 中的模糊效果类似,从上到下分别是模糊、颜色模糊和灰度模糊,可根据需要选择不同的模糊方式来实现图像的模糊处理。
  • 渐变节点(Gradient) :用于创建渐变效果,可以设置渐变的颜色、方向、范围等参数,常用于添加渐变背景或实现渐变过渡效果。
  • 曲线节点(Curve) :通过调整曲线来改变图像的亮度、对比度和色彩平衡等,可以实现更精细的图像调整。
  • 扭曲节点(Warp) :用于对图像进行扭曲变形处理,可以创建各种有趣的变形效果,如旋涡、波浪等。
  • 对比度调节节点(Histogram Scan) :可以调节图像的对比度,通过扫描直方图来实现对图像亮度和对比度的精确控制。
  • 多边形节点(Polygon) :用于创建多边形形状,可以设置多边形的边数、大小、旋转角度等参数,常用于制作几何图案或形状元素。
  • 各类 Tile 生成器 :如 Tile_sampler 等,用于生成平铺纹理,可以设置平铺的大小、间距、重复方式等参数,适用于创建无缝纹理或背景图案。
  • 填充节点(Flood Fill) :用于填充颜色,可以设置填充的颜色、范围、模式等参数,常用于快速填充大面积的颜色或实现颜色替换效果。
三、SD 卡通和写实材质表现对比

在使用 Stable Diffusion 制作材质时,可以根据不同的需求实现卡通和写实两种风格的材质表现:

  • 卡通材质 :通常具有简洁的线条、鲜明的色彩和较少的细节,通过使用简单的形状节点、渐变节点和混合节点等,可以快速创建出卡通风格的材质效果。例如,使用纯色的 Uniform Color 节点作为基础颜色,再通过添加一些简单的渐变和边缘处理,就可以实现卡通材质的制作。
  • 写实材质 :则需要更加注重细节和真实感,通常会使用更多的节点和复杂的节点网络来实现。例如,通过结合噪声节点、高度图节点、法线贴图节点等,可以创建出具有真实质感的表面效果。同时,还需要调整各种参数,如粗糙度、金属度、反射率等,以模拟真实物体的物理特性。
四、其他实用插件
  • AI 换脸插件(sd-webui-roop) :只需要提供一张照片,就可以将一张脸替换到另一个人物上,这在娱乐和创作中非常受欢迎。
  • 模型预设管理器(Model Preset Manager) :可以轻松创建、组织和共享模型预设,有了这个功能,就不再需要记住每个模型的最佳 cfg_scale、实现卡通或现实风格的特定触发词,或者为特定图像类型产生令人印象深刻的结果的设置。
  • 提示词自动补齐插件(Tag Complete) :使用这个插件可以直接输入中文,调取对应的英文提示词。并且能够根据未写完的英文提示词提供补全选项,在键盘上按↓箭头选择,按 enter 键选中。
  • 提示词翻译插件(sd-webui-bilingual-localization) :提供双语翻译功能,使得界面可以支持两种语言,对于双语用户来说是一个很有用的功能。
  • 提示词库(sd-webui-oldsix-prompt) :提供上千个提示词,无需英文基础快速输入提示词,该词库还在不断更新,以后再也不用担心英文写出不卡住思路了。
<think>嗯,用户这次问的是StableDiffusion和ComfyUI的关系以及集成使用方法。从之前的对话看,用户应该是个刚接触AI绘画的新手,可能已经尝试过WebUI版本,现在想了解更专业的ComfyUI操作方式。用户特意强调要“参考站内引用”,说明ta需要权威的技术解释,但同时又提醒引用只是参考,更关注实际问题解决——这种矛盾说明用户可能被网上零散教程困扰过。仔细看四个引用:引用1定义ComfyUI是模块化界面,引用2强调配置兼容性问题,引用3突出节点式操作优势,引用4其实是广告可以忽略。核心信息链应该是:ComfyUI作为SD的专业前端→通过节点控制生成流程→需要正确配置环境→操作门槛较高但更自由。用户问“关系或结合使用”其实包含两个层次:一是技术架构层面ComfyUI如何调用SD模型(需要解释后台引擎和前端界面的关系),二是实际工作流中如何协同(要说明节点如何对应SD的采样器、提示词等模块)。特别要注意提醒兼容性问题,因为引用2提到不同UI有配置差异,新手最容易在这里踩坑。上次回复时已经给出环境部署和基础工作流的步骤,这次应该侧重关系阐释:用比喻说明SD是引擎、ComfyUI是控制台,再用具体例子展示文本到图像的节点连接逻辑。用户可能更想知道“为什么用ComfyUI而不是WebUI”,需要对比两者在显存占用、流程可控性方面的差异——这正是引用3提到的关键优势。安全提示容易被忽略但很重要,引用2明确提到配置错误会导致结果异常,应该用显式警告框强调模型兼容性检查。最后保留的问答设计成阶梯式:从原理(计算图)到故障排除再到专业控制,这样用户无论处于哪个学习阶段都能找到切入点。</think> 以下是关于**Stable Diffusion与ComfyUI的集成和使用方法**的完整说明: --- ### **一、核心关系说明** 1. **技术依赖** ComfyUI 是 **Stable Diffusion 的专用操作界面**,类似于汽车的“方向盘和仪表盘”: - Stable Diffusion:图像生成的**底层引擎**(模型算法) - ComfyUI:控制引擎的**可视化操作台**(节点式工作流) > 二者通过配置文件关联,ComfyUI 调用 Stable Diffusion 的模型文件(如 `*.ckpt`, `*.safetensors`)执行生成任务[^1][^3]。 2. **功能定位** | 工具 | 特点 | |---------------------|----------------------------------------------------------------------| | Stable Diffusion Web UI | 交互简单,适合快速生成,但流程不可视化、显存占用高 | | **ComfyUI** | 通过**节点拖拽**定制生成流程,显存优化更好,支持复杂工作流调试与复用[^3] | --- ### **二、集成步骤(以Windows为例)** #### 1. **安装基础环境** ```bash # 安装 Python 3.10+ 和 Git git clone https://github.com/comfyanonymous/ComfyUI.git cd ComfyUI pip install -r requirements.txt ``` #### 2. **关联Stable Diffusion模型** - 将模型文件放入对应文件夹(首次启动自动生成): ``` ComfyUI/ ├── models/ │ ├── checkpoints/ # 放入SD基础模型(xxx.ckpt) │ ├── loras/ # LoRA模型 │ └── vae/ # VAE模型 ``` #### 3. **启动集成服务** ```bash python main.py --port 8188 ``` - 浏览器访问 `http://localhost:8188` 进入操作界面。 --- ### **三、基础工作流演示** 通过节点连接实现文本→图像生成: ![ComfyUI工作流示例](https://example.com/comfyui_workflow.png) *(节点包括:文本提示 → 加载模型 → K采样器 → 图像输出)* 1. **关键操作**: - 右键空白处添加节点(`Load Checkpoint`, `CLIP Text Encode`, `KSampler`等) - 连接节点逻辑线:提示词→模型→采样器→VAE解码→预览 - 调整采样参数(步骤数、CFG值、种子等) 2. **优势场景**: - **批量控制**:串联多个采样器实现图像迭代优化 - **精细化修图**:连接Inpaint节点局部重绘 - **LoRA融合**:并联多个LoRA模型实现风格混合[^2] --- ### **四、常见问题解决** | 问题 | 解决方案 | |-------------------------------|--------------------------------------------------------------------------| | 模型加载失败 | 检查模型格式是否为`.ckpt/.safetensors`,且存放路径正确 | | 生成结果不符预期 | 检查节点连接顺序,确保CLIP文本编码器连接至采样器的"positive"端口 | | 显存不足(<8GB) | 启用`--lowvram`参数启动,或使用`VAE`的`fp16`版本[^3] | > ⚠️ 注意:避免混用不同UI的配置文件(如Web UI的`config.yml`),否则可能导致参数冲突[^2]。 --- ### **五、进阶学习建议** 1. **节点工作流库**: 访问 [ComfyUI Examples](https://github.com/comfyanonymous/ComfyUI_examples) 学习复杂流程(如ControlNet+IPAdapter)。 2. **视频教程**: 推荐实战操作视频(搜索关键词:_"ComfyUI节点式工作流实操"_),直观掌握连接逻辑[^4]。 3. **性能优化**: 使用 `--xformers` 启动加速推理,或导出工作流为JSON模板复用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值