好沮丧,大语言模型不懂我怎么办, 怎么也搜不到想要的答案(ㄒoㄒ)
当当当当,Redis VSS闪亮登场,不必微调模型, 也能轻松驾驭大语言,快速解答你的疑虑,满足你 的求知欲,你的AI好伙伴!
在这个简短的教程中,我们将使用 Relevance AI、Redis VSS、OpenAI GPT 和 Cohere Wikipedia 嵌入创建一条LLM链,这使得我们能够使用Redis向量搜索向百科提问,根据我们的问题搜索最相似的文章。对于嵌入向量,它们是表示各种类型数据的数字列表,在这里,我们使用Cohere多语言模型生成的嵌入向量。
为了按照本教程进行操作,您需要一个支持JSON文档数据结构,且内置实时搜索和查询功能的Redis数据库。您可以选择在Redis Enterprise Cloud上创建,或者在Docker中使用Redis Stack创建。
一、设置Redis作为向量数据库
运行Redis之后,我们从HuggingFace上导入Cohere的多语言维基百科嵌入数据集,这只需要几个简单的步骤,您可以在这个jupyter笔记本中查看完整的代码。
步骤 1. 安装redis和datasets的Python库。
pip install redis datasets
步骤 2. 创建一个客户端连接。
import redis
redis_client = redis.from_url(‘redis://connection-string’)
步骤 3. 下载样本数据集。